Stereo Vision-based Local Occupancy Grid Map for Autonomous Navigation in ROS

Pablo Marín-Plaza, Jorge Beltrán, Ahmed Hussein, Basam Musleh, David Martín, Arturo de la Escalera, José María Armingol

Abstract

Autonomous navigation for unmanned ground vehicles has gained significant interest in the research community of mobile robotics. This increased attention comes from its noteworthy role in the field of Intelligent Transportation Systems (ITS). In order to achieve the autonomous navigation for ground vehicles, a detailed model of the environment is required as its input map. This paper presents a novel approach to recognize static obstacles by means of an on-board stereo camera and build a local occupancy grid map in a Robot Operating System (ROS) architecture. The output maps include information concerning the environment 3D structures, which is based on stereo vision. These maps can enhance the global grid map with further details for the undetected obstacles by the laser rangefinder. In order to evaluate the proposed approach, several experiments are performed in different scenarios. The output maps are precisely compared to the corresponding global map segment and to the equivalent satellite image. The obtained results indicate the high performance of the approach in numerous situations.

References

  1. Bernini, N., Bertozzi, M., Castangia, L., Patander, M., and Sabbatelli, M. (2014). Real-time obstacle detection using stereo vision for autonomous ground vehicles: A survey. In Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on, pages 873-878. IEEE.
  2. Broggi, A., Cappalunga, A., Caraffi, C., Cattani, S., Ghidoni, S., Grisleri, P., Porta, P., Posterli, M., Zani, P., and Beck, J. (2008). The passive sensing suite of the terramax autonomous vehicle. In Intelligent Vehicles Symposium, 2008 IEEE, pages 769-774. IEEE.
  3. Cech, M., Niem, W., Abraham, S., and Stiller, C. (2004). Dynamic ego-pose estimation for driver assistance in urban environments. In Intelligent Vehicles Symposium, 2004 IEEE, pages 43-48. IEEE.
  4. De Paula, M., Jung, C., et al. (2014). Automatic onthe-fly extrinsic camera calibration of onboard vehicular cameras. Expert Systems with Applications, 41(4):1997-2007.
  5. Grey, P. (2012). Bumblebee: stereo vision camera systems. Technical Description.
  6. Guo, C., Mita, S., and McAllester, D. (2009). Drivable road region detection using homography estimation and efficient belief propagation with coordinate descent optimization. In Intelligent Vehicles Symposium, 2009 IEEE, pages 317-323. IEEE.
  7. Hold, S., Gormer, S., Kummert, A., Meuter, M., and Muller-Schneiders, S. (2009a). A novel approach for the online initial calibration of extrinsic parameters for a car-mounted camera. In Intelligent Transportation Systems, 2009. ITSC'09. 12th International IEEE Conference on, pages 1-6. IEEE.
  8. Hold, S., Nunn, C., Kummert, A., and Muller-Schneiders, S. (2009b). Efficient and robust extrinsic camera calibration procedure for lane departure warning. In Intelligent Vehicles Symposium, 2009 IEEE, pages 382- 387. IEEE.
  9. Hu, Z., Lamosa, F., and Uchimura, K. (2005). A complete uv-disparity study for stereovision based 3d driving environment analysis. In 3-D Digital Imaging and Modeling, 2005. 3DIM 2005. Fifth International Conference on, pages 204-211. IEEE.
  10. Intelligence, S. S. (2006). Lms200/211/221/291 laser measurement systems. Technical Description.
  11. Labayrade, R. and Aubert, D. (2003). In-vehicle obstacles detection and characterization by stereovision. Proc. IEEE In-Vehicle Cognitive Comput. Vis. Syst, pages 1-3.
  12. Li, S. and Hai, Y. (2011). Easy calibration of a blind-spotfree fisheye camera system using a scene of a parking space. Intelligent Transportation Systems, IEEE Transactions on, 12(1):232-242.
  13. Musleh, B., de la Escalera, A., and Armingol, J. M. (2011). Real-time pedestrian recognition in urban environments. In Advanced Microsystems for Automotive Applications 2011, pages 139-147. Springer.
  14. Musleh, B., de la Escalera, A., and Armingol, J. M. (2012). Uv disparity analysis in urban environments. In Computer Aided Systems Theory-EUROCAST 2011 , pages 426-432. Springer.
  15. Musleh, B., Martin, D., Armingol, J. M., and de la Escalera, A. (2014). Continuous pose estimation for stereo vision based on uv disparity applied to visual odometry in urban environments. In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 3983-3988. IEEE.
  16. Soquet, N., Perrollaz, M., Labayrade, R., Aubert, D., et al. (2007). Free space estimation for autonomous navigation. In 5th International Conference on Computer Vision Systems.
  17. Teoh, C., Tan, C., and Tan, Y. C. (2010). Ground plane detection for autonomous vehicle in rainforest terrain. In Sustainable Utilization and Development in Engineering and Technology (STUDENT), 2010 IEEE Conference on, pages 7-12. IEEE.
  18. Thrun, S. (2001). Learning occupancy grids with forward models. In Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on, volume 3, pages 1676-1681 vol.3.
  19. Thrun, S. (2003). Learning occupancy grid maps with forward sensor models. Autonomous robots, 15(2):111- 127.
  20. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D., Galatali, T., Geyer, C., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25(8):425-466.
Download


Paper Citation


in Harvard Style

Marín-Plaza P., Beltrán J., Hussein A., Musleh B., Martín D., de la Escalera A. and Armingol J. (2016). Stereo Vision-based Local Occupancy Grid Map for Autonomous Navigation in ROS . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 701-706. DOI: 10.5220/0005787007010706


in Bibtex Style

@conference{visapp16,
author={Pablo Marín-Plaza and Jorge Beltrán and Ahmed Hussein and Basam Musleh and David Martín and Arturo de la Escalera and José María Armingol},
title={Stereo Vision-based Local Occupancy Grid Map for Autonomous Navigation in ROS},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={701-706},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005787007010706},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - Stereo Vision-based Local Occupancy Grid Map for Autonomous Navigation in ROS
SN - 978-989-758-175-5
AU - Marín-Plaza P.
AU - Beltrán J.
AU - Hussein A.
AU - Musleh B.
AU - Martín D.
AU - de la Escalera A.
AU - Armingol J.
PY - 2016
SP - 701
EP - 706
DO - 10.5220/0005787007010706