Evaluation of Gait Parameters Determined by InvestiGAIT against a Reference System

Katja Orlowski, Harald Loose, Falko Eckardt, Jürgen Edelmann-Nusser, Kerstin Witte

Abstract

The purpose is to investigate the validity of an inertial-sensor based gait analysis system (InvestiGAIT) consisting of off-the-shelf sensors and an in-house capturing and analyzing software. The gait of five persons with transfermoral limb loss were captured with the inertial system (Shimmer sensors) and the motion capture system (Vicon) integrating two force plates chosen as reference system in this study. Eleven gait parameters are determined from the data of the captured gait sequences. These gait parameters were compared descriptively and statistically using boxplots, Bland-Altman-plots, including the mean of difference (MOD) and the limits of agreement (LoA), the standard error of the mean (SEM), the Wilcoxon test and the Pearson’s correlation coefficient. A complete validity of the gait parameters was not assumed due to the different measurement methods and the impact of the IMU sensor attachment (on the lower shank above the ankle). For the sound and the amputated leg four gait parameters show no significant difference (stride duration, cadence, velocity, stride length). All the other parameters have a p-value smaller than 0.05. Most of the gait parameters have a small MOD, SEM and LoA. These values show a very small absolute difference between the gait parameters of both systems. Based on the results the InvestiGAIT system can be assumed as valid and suitable for follow-up investigations of human gait in research projects or the clinical environment. Nevertheless, further investigations with healthy subjects and a sensor attachment on the subjects’ shoe are planned.

References

  1. Atkinson, G. and Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine, 26(4):217-238.
  2. Azad, P. (2009). Visual Perception for Manipulation and Imitation in Humanoid Robots. Springer.
  3. Bland, J. Martin; Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 8:307-309.
  4. B öhme, B. (2012). Studie zur Untersuchung der Validität des neuen Ganganalysesystems RehaWatch der Firma Hasomed an gesunden Probanden. PhD thesis, Friedrich-Schiller-Universit Jena.
  5. Cloete, T. and Scheffer, C. (2008). Benchmarking of a fullbody inertial motion capture system for clinical gait analysis. 30th Annual International IEEE EMBS Conference.
  6. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (2nd ed.). Hillsdale, NJ: Erlbaum.
  7. Cuesta-Vargas, A. I., Galan-Mercant, A., and Williams, J. M. (2010). The use of inertial sensors system for human motion analysis (systematic review). Physical Therapy Reviews, 15(6):462-473.
  8. Derlien, S., Böhme, B., and Smolenksi, U. (2010). Validitätsuntersuchung zum neuen, innovativen ganganalysesystem rehawatch von hasomed. Manuelle Medizin, 48(254-259).
  9. Greene, B. R., McGrath, D., ONeill, R., ODonovan, K. J., Burns, A., and Caul?eld, B. (2010). An adaptive gyroscope-based algorithm for temporal gait analysis. Med Biol Eng Comput, 48:1251-1260.
  10. Hundza, S. R., Hook, W. R., Harris, C. R., Mahajan, S. V., Leslie, P. A., Spani, C. A., Spalteholz, L. G., Birch, B. J., Commandeur, D. T., and Livingston, N. J. (2014). Accurate and reliable gait cycle detection in parkinson's disease. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society, 22(1):127-137.
  11. Latt, W. T., Veluvolu, K. C., and Ang, W. T. (2011). Drift-free position estimation of periodic or quasiperiodic motion using inertial sensors. Sensors (Basel), 11(6):5931-5951.
  12. Loose, H. and Orlowski, K. (2015a). Gait patterns in standard scenarios - using xsens mtw inertial measurement units. 16th International Conference on Research and Education in Mechatronics REM2015.
  13. Loose, H. and Orlowski, K. (2015b). Model based determination of gait parameters using imu sensor data. Proceeding of Meachatronic Systems and Material (MSM 2015), 7-9 July 2015, Kaunas, Lithuania.
  14. Magness, S. (2010). Understanding stride rate and stride length. http://www.scienceofrunning.com/2010/11/- speed-stride-length-x-stride-frequency.html, Online: 28.10.2015.
  15. Mannini, A. and Sabatini, A. M. (2012). Gait phase detection and discrimination between walking - jogging activities using hidden markov models applied to foot motion data from a gyroscope. Gait & Posture, 36:657-661.
  16. Mercer, J. and Chona, C. (2015). Stride lengthvelocity relationship during running with body weight support. Journal of Sport and Health Science (2015). http://dx.doi.org/10.1016/j.jshs.2015.01.003.
  17. Orlowski, K. and Loose, H. (2013). Evaluation of kinect and shimmer sensors for detection of gait parameters. Proceedings of BIOSIGNALS 2013, Int. Conference on Bio-Inspired Systems and Signal Processing, Barcelona, Spain, 11-14 Feb. 2013, pages 157-162.
  18. Orlowski, K. and Loose, H. (2014). Simple algorithms for the determination or the walking distance based on the acceleration sensor. Proceedings of BIOSIGNALS 2014, Int. Conference on Bio-Inspired Systems and Signal Processing, Angers, France, 3-6 March 2014, pages 264-269.
  19. Pavetic, M. (2015). Streudiagramme und korrelation. https://www.uni-due.de/imperia/md/content/- soziologie/stein/uebungsskript deskriptivstatistik teil vi.pdf, Online: 28.10.2015.
  20. Richards, J. G. (1999). The measurement of human motion: A comparison of commercially available systems. Human Movement Science, 18:589-602.
  21. Schwameder, H., Andress, M., Graf, E., and Strutzenberger, G. (2015). Validation of an imu-system (gaitup) to identify gait parameters in normal and induced limping walking conditions. International society of biomechanics in sports.
  22. Singleton, S., Keating, S., McDowell, S., Coolen, B., and Wall, J. (1992). Predicting step time from step length and velocity. Australian Physiotherapy, 38(1):43-46.
  23. Thong, Y. K., Woolfson, M. S., Crowe, J. A., Hayes-Gill, B. R., and Challis, R. E. (2002). Dependence of inertial measurements of distance on accelerometer noise. Meas. Sci. Technol., 13.
Download


Paper Citation


in Harvard Style

Orlowski K., Loose H., Eckardt F., Edelmann-Nusser J. and Witte K. (2016). Evaluation of Gait Parameters Determined by InvestiGAIT against a Reference System . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 256-262. DOI: 10.5220/0005783502560262


in Bibtex Style

@conference{biosignals16,
author={Katja Orlowski and Harald Loose and Falko Eckardt and Jürgen Edelmann-Nusser and Kerstin Witte},
title={Evaluation of Gait Parameters Determined by InvestiGAIT against a Reference System},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)},
year={2016},
pages={256-262},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005783502560262},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)
TI - Evaluation of Gait Parameters Determined by InvestiGAIT against a Reference System
SN - 978-989-758-170-0
AU - Orlowski K.
AU - Loose H.
AU - Eckardt F.
AU - Edelmann-Nusser J.
AU - Witte K.
PY - 2016
SP - 256
EP - 262
DO - 10.5220/0005783502560262