Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human Action Recognition

Adel Saleh, Miguel Angel Garcia, Farhan Akram, Mohamed Abdel-Nasser, Domenec Puig

Abstract

This paper presents a video representation that exploits the properties of the trajectories of local descriptors in human action videos. We use spatial-temporal information, which is led by trajectories to extract kinematic properties: tangent vector, normal vector, bi-normal vector and curvature. The results show that the proposed method provides comparable results compared to the state-of-the-art methods. In turn, it outperforms compared methods in terms of time complexity.

References

  1. Ben Aoun, N., Elghazel, H., and Ben Amar, C. (2011). Graph modeling based video event detection. In 2011 International Conference on Innovations in Information Technology (IIT), pages 114-117. IEEE.
  2. Bouchrika, T., Zaied, M., Jemai, O., and Amar, C. B. (2014). Neural solutions to interact with computers by hand gesture recognition. Multimedia Tools and Applications, 72(3):2949-2975.
  3. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 886-893. IEEE.
  4. Dalal, N., Triggs, B., and Schmid, C. (2006). Human detection using oriented histograms of flow and appearance. In Computer Vision-ECCV 2006, pages 428- 441. Springer.
  5. Hou, R., Zamir, A. R., Sukthankar, R., and Shah, M. (2014). Damn-discriminative and mutually nearest: Exploiting pairwise category proximity for video action recognition. In Computer Vision-ECCV 2014, pages 721-736. Springer.
  6. Jain, M., Jégou, H., and Bouthemy, P. (2013). Better exploiting motion for better action recognition. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2555-2562. IEEE.
  7. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre, T. (2011). Hmdb: a large video database for human motion recognition. In IEEE International Conference on Computer Vision (ICCV), pages 2556-2563. IEEE.
  8. Laptev, I., Marszalek, M., Schmid, C., and Rozenfeld, B. (2008). Learning realistic human actions from movies. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-8. IEEE.
  9. Peng, X., Wang, L., Wang, X., and Qiao, Y. (2014). Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. arXiv preprint arXiv:1405.4506.
  10. Perronnin, F., Sánchez, J., and Mensink, T. (2010). Improving the fisher kernel for large-scale image classification. In Computer Vision-ECCV 2010, pages 143- 156. Springer.
  11. Raptis, M. and Soatto, S. (2010). Tracklet descriptors for action modeling and video analysis. In Computer Vision-ECCV 2010, pages 577-590. Springer.
  12. Sánchez, J., Perronnin, F., Mensink, T., and Verbeek, J. (2013). Image classification with the Fisher vector: Theory and practice. International Journal of Computer Vision, 105(3):222-245.
  13. Sekma, M., Mejdoub, M., and Amar, C. B. (2013). Human action recognition using temporal segmentation and accordion representation. In Computer Analysis of Images and Patterns, pages 563-570. Springer.
  14. Simonyan, K. and Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. In Advances in Neural Information Processing Systems, pages 568-576.
  15. Wang, H., Kläser, A., Schmid, C., and Liu, C.-L. (2011). Action recognition by dense trajectories. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3169-3176. IEEE.
  16. Wang, H. and Schmid, C. (2013). Action recognition with improved trajectories. In IEEE International Conference on Computer Vision (ICCV), pages 3551-3558. IEEE.
  17. Wang, H., Ullah, M. M., Klaser, A., Laptev, I., and Schmid, C. (2009). Evaluation of local spatio-temporal features for action recognition. In British Machine Vision Conference (BMVC), pages 124-1. BMVA Press.
  18. Wang, L., Qiao, Y., and Tang, X. (2013). Motionlets: Midlevel 3d parts for human motion recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2674-2681. IEEE.
  19. Wang, W.-C., Chung, P.-C., Cheng, H.-W., and Huang, C.- R. (2015). Trajectory kinematics descriptor for trajectory clustering in surveillance videos. In IEEE International Symposium on Circuits and Systems (ISCAS), pages 1198-1201. IEEE.
  20. Yang, X. and Tian, Y. (2014). Action recognition using super sparse coding vector with spatio-temporal awareness. In Computer Vision-ECCV 2014, pages 727- 741. Springer.
Download


Paper Citation


in Harvard Style

Saleh A., Garcia M., Akram F., Abdel-Nasser M. and Puig D. (2016). Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human Action Recognition . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 180-185. DOI: 10.5220/0005781001800185


in Bibtex Style

@conference{visapp16,
author={Adel Saleh and Miguel Angel Garcia and Farhan Akram and Mohamed Abdel-Nasser and Domenec Puig},
title={Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human Action Recognition},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={180-185},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005781001800185},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human Action Recognition
SN - 978-989-758-175-5
AU - Saleh A.
AU - Garcia M.
AU - Akram F.
AU - Abdel-Nasser M.
AU - Puig D.
PY - 2016
SP - 180
EP - 185
DO - 10.5220/0005781001800185