Automatic and Generic Evaluation of Spatial and Temporal Errors in Sport Motions

Marion Morel, Richard Kulpa, Anthony Sorel, Catherine Achard, Séverine Dubuisson

Abstract

Automatically evaluating and quantifying the performance of a player is a complex task since the important motion features to analyze depend on the type of performed action. But above all, this complexity is due to the variability of morphologies and styles of both the experts who perform the reference motions and the novices. Only based on a database of experts' motions and no additional knowledge, we propose an innovative 2-level DTW (Dynamic Time Warping) approach to temporally and spatially align the motions and extract the imperfections of the novice's performance for each joints. In this study, we applied our method on tennis serve but since it is automatic and morphology-independent, it can be applied to any individual motor performance.

References

  1. Barnachon, M., Bouakaz, S., Boufama, B., and Guillou, E. (2013). A Real-Time System for Motion Retrieval and Interpretation. Pattern Recognition Letters, 34(15):1789-1798.
  2. Burns, A.-M., Kulpa, R., Durny, A., Spanlang, B., Slater, M., and Multon, F. (2011). Using virtual humans and computer animations to learn complex motor skills: a case study in karate. BIO Web of Conferences, 1(12).
  3. Gong, D., Medioni, G., and Zhao, X. (2014). Structured time series analysis for human action segmentation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7):1414-1427.
  4. Heloir, A., Courty, N., Gibet, S., and Multon, F. (2006). Temporal alignment of communicative gesture sequences. Computer Animation and Virtual Worlds, 17(3-4):347-357.
  5. Kahol, K., Tripathi, P., and Panchanathan, S. (2004). Computational analysis of mannerism gestures. In ICPR, pages 946-949.
  6. Keogh, E. J. and Pazzani, M. J. (2001). Derivative dynamic time warping. In SIAM International Conference on Data Mining, pages 1-11.
  7. Komura, T., Lam, B., Lau, R. W. H., and Leung, H. (2006). e-learning martial arts. In ICWL, pages 239-248.
  8. Kulpa, R., Multon, F., and Arnaldi, B. (2005). Morphologyindependent representation of motions for interactive human-like animation. Computer Graphics Forum, 24(3):343-352.
  9. Maes, P.-J., Amelynck, D., and Leman, M. (2012). Dancethe-music: an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates. EURASIP Journal on Advances in Signal Processing, 2012(1):35.
  10. Müller, M. and Röder, T. (2006). Motion templates for automatic classification and retrieval of motion capture data. ACM SIGGRAPH, pages 137-146.
  11. Müller, M., Röder, T., and Clausen, M. (2005). Efficient content-based retrieval of motion capture data. ACM Transactions on Graphics, 24(3):677.
  12. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., and Bajcsy, R. (2012). Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition. In CVPRW, pages 8-13.
  13. Pazhoumand-Dar, H., Lam, C.-P., and Masek, M. (2015). Joint movement similarities for robust 3D action recognition using skeletal data. Journal of Visual Communication and Image Representation, 30:10-21.
  14. Pham, M. T., Moreau, R., and Boulanger, P. (2010). Threedimensional gesture comparison using curvature analysis of position and orientation. In EMB, pages 6345- 6348.
  15. Röder, T. (2006). Similarity, Retrieval, and Classification of Motion Capture Data. PhD thesis, Rheinischen Friedrich- Wilhelms- Universität, Bonn.
  16. Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43-49.
  17. Sakurai, K., Choi, W., Li, L., and Hachimura, K. (2014). Retrieval of similar behavior data using kinect data. In ICCAS, pages 97-104.
  18. Shin, H. J., Lee, J., Shin, S. Y., and Gleicher, M. (2001). Computer puppetry: An importance-based approach. ACM Transactions on Graphics, 20(2):67-94.
  19. Sie, M.-S., Cheng, Y.-C., and Chiang, C.-C. (2014). Key motion spotting in continuous motion sequences using motion sensing devices. In ICSPCC, pages 326-331.
  20. Sorel, A., Kulpa, R., Badier, E., and Multon, F. (2013). Dealing with variability when recognizing user's performance in natural 3D gesture interfaces. International Journal of Pattern Recognition and Artificial Intelligence, 27(8):19.
  21. Wang, J., Liu, Z. L., Wu, Y. W., and Yuan, J. (2012). Mining actionlet ensemble for action recognition with depth cameras. In CVPR, pages 1290-1297.
  22. Wang, S. B., Quattoni, A., Morency, L.-P., and Demirdjian, D. (2006). Hidden conditional random fields for gesture recognition. In CVPR, pages 1521-1527.
  23. Ward, R. E. (2012). Biomechanical Perspectives on Classical Ballet Technique and Implications for Teaching Practice. PhD thesis, University of New South Wales, Sydney, Australia.
  24. Xia, L., Chen, C.-C., and Aggarwal, J. K. (2012). View invariant human action recognition using histograms of 3D joints. In CVPRW, pages 20-27.
  25. Zhong, S. and Ghosh, J. (2002). HMMs and coupled HMMs for multi-channel EEG classification. In IJCNN, pages 1154-1159.
  26. Zhou, F. and de la Torre, F. (2015). Generalized canonical time warping. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1-1.
  27. Zhou, F. and De La Torre Frade, F. (2009). Canonical time warping for alignment of human behavior. In NIPS, pages 2286-2294.
Download


Paper Citation


in Harvard Style

Morel M., Kulpa R., Sorel A., Achard C. and Dubuisson S. (2016). Automatic and Generic Evaluation of Spatial and Temporal Errors in Sport Motions . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 542-551. DOI: 10.5220/0005778505420551


in Bibtex Style

@conference{visapp16,
author={Marion Morel and Richard Kulpa and Anthony Sorel and Catherine Achard and Séverine Dubuisson},
title={Automatic and Generic Evaluation of Spatial and Temporal Errors in Sport Motions},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={542-551},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005778505420551},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - Automatic and Generic Evaluation of Spatial and Temporal Errors in Sport Motions
SN - 978-989-758-175-5
AU - Morel M.
AU - Kulpa R.
AU - Sorel A.
AU - Achard C.
AU - Dubuisson S.
PY - 2016
SP - 542
EP - 551
DO - 10.5220/0005778505420551