Skyline Computation on Commercial Data

Michael Galli, Stefan Schnürle, Ruedi Arnold, Marc Pouly

Abstract

Many different skyline algorithms for preference-based search have been proposed and compared in the literature, but most of these evaluations were based on synthetic data. In this paper, we present a case study of skyline computation on commercial data that we consider representative for many e-commerce platforms. The results of our measurements differ significantly from the results reported on synthetic data.

References

  1. Aldrich, S. E. (2011). Recommender systems in commercial use. AI Magazine, 32(3):28-34.
  2. Balke, W.-T., G üntzer, U., and Siberski, W. (2007). Restricting skyline sizes using weak pareto dominance. Inform., Forsch. Entwickl., 21(3-4):165-178.
  3. B örzs önyi, S., Kossmann, D., and Stocker, K. (2001). The skyline operator. In Proceedings of the 17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany, pages 421-430.
  4. Chaudhuri, S., Dalvi, N., and Kaushik, R. (2006). Robust cardinality and cost estimation for skyline operator. In ICDE. Institute of Electrical and Electronics Engineers, Inc.
  5. Chomicki, J., Godfrey, P., Gryz, J., and Liang, D. (2003). Skyline with presorting. In Dayal, U., Ramamritham, K., and Vijayaraman, T., editors, ICDE, pages 717- 719. IEEE Computer Society.
  6. Chomicki, J., Godfrey, P., Gryz, J., and Liang, D. (2005). Skyline with presorting: theory and optimizations. In Klopotek, M. A., Wierzchon, S. T., and Trojanowski, K., editors, Intelligent Information Systems, Advances in Soft Computing, pages 595-604. Springer.
  7. Cole, P. (2013). Amazon.com catalog blows past 200m items. https://sellerengine.com/amazon-com-catalogblows-past-200m-items, last visited: 2015-10-10.
  8. Endres, M., Roocks, R., and Kissling, W. (2015). Scalagon: An efficient skyline algorithm for all seasons. In DASFAA: 20th Int. Conference of Database Systems for Advanced Applications, pages 292-308.
  9. (2015). prefsql code repository and experimental setting. https://github.com/migaman/prefSQL, last visited: 2015-10-10.
  10. Godfrey, P., Shipley, R., and Gryz, J. (2005). Maximal vector computation in large data sets. In B öhm, K., Jensen, C. S., Haas, L. M., Kersten, M. L., Larson, P., and Ooi, B. C., editors, VLDB, pages 229-240. ACM.
  11. Han, X., Li, J., Yang, D., and Wang, J. (2013). Efficient skyline computation on big data. IEEE Trans. on Knowl. and Data Eng., 25(11):2521-2535.
  12. Lofi, C. and Balke, W.-T. (2013). On skyline queries and how to choose from pareto sets. In Catania, B. and Jain, L. C., editors, Advanced Query Processing (1), volume 36 of Intelligent Systems Reference Library, pages 15-36. Springer.
  13. Martin, F. J., Donaldson, J., Ashenfelter, A., Torrens, M., and Hangartner, R. (2011). The big promise of recommender systems. AI Magazine, 32(3):19-27.
  14. Papadias, D., Tao, Y., Fu, G., and Seegerr, B. (2003). An optimal and progressive algorithm for skyline queries. In Proc. of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD 7803, pages 467-478, New York, NY, USA. ACM.
  15. Preisinger, T. and Kissling, W. (2007). The hexagon algorithm for pareto preference queries. In Proc. of the 3rd Multidisciplinary Workshop on Advances in Preference Handling.
  16. Preisinger, T., Kissling, W., and Endres, M. (2006). The bnl++ algorithm for evaluating pareto preference queries. In In Proc. of the Multidisciplinary Workshop on Advances in Preference Handling.
  17. Rooks, P. (2014). The rpref package the rpref package: database preferences and skyline computation in r. http://www.p-roocks.de/rpref/, last visited: 2015-10- 21.
  18. Tao, Y., Xiao, X., and Pei, J. (2007). Efficient skyline and top-k retrieval in subspaces. IEEE Trans. Knowl. Data Eng., 19(8):1072-1088.
Download


Paper Citation


in Harvard Style

Galli M., Schnürle S., Arnold R. and Pouly M. (2016). Skyline Computation on Commercial Data . In Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-172-4, pages 465-471. DOI: 10.5220/0005766604650471


in Bibtex Style

@conference{icaart16,
author={Michael Galli and Stefan Schnürle and Ruedi Arnold and Marc Pouly},
title={Skyline Computation on Commercial Data},
booktitle={Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2016},
pages={465-471},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005766604650471},
isbn={978-989-758-172-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Skyline Computation on Commercial Data
SN - 978-989-758-172-4
AU - Galli M.
AU - Schnürle S.
AU - Arnold R.
AU - Pouly M.
PY - 2016
SP - 465
EP - 471
DO - 10.5220/0005766604650471