
EyeRec: An Open-source Data Acquisition Software for Head-mounted
Eye-tracking

Thiago Santini, Wolfgang Fuhl, Thomas Kübler and Enkelejda Kasneci
Perception Engineering Group, University of Tübingen, Tübingen, Germany

Keywords: Eye Movements, Recording Software, Pupil Detection, Calibration, Open-source, Data Acquisition.

Abstract: Head-mounted eye tracking offers remarkable opportunities for human computer interaction in dynamic sce-
narios (e.g., driving assistance). Although a plethora of proprietary software for the acquisition of such eye-
tracking data exists, all of them are plagued by a critical underlying issue: their source code is not available to
the end user. Thus, a researcher is left with few options when facing a scenario in which the proprietary soft-
ware does not perform as expected. In such a case, the researcher is either forced to change the experimental
setup (which is undesirable) or invest a considerable amount of time and money in a different eye-tracking
system (which may also underperform). In this paper, we introduce EyeRec, an open-source data acquisition
software for head-mounted eye-tracking. Out of the box, EyeRec offers real-time state-of-the-art pupil detec-
tion and gaze estimation, which can be easily replaced by user implemented algorithms if desired. Moreover,
this software supports multiple head-mounted eye-tracking hardware, records eye and scene videos, and stores
pupil and gaze information, which are also available as a real-time stream. Thus, EyeRec can be an efficient
means towards facilitating gazed-based human computer interaction research and applications. Available at:
www.perception.uni-tuebingen.de

1 INTRODUCTION

In the past two decades, the number of researchers
using eye trackers has grown enormously (Holmqvist
et al., 2011). These researchers stem from several
distinct fields (Duchowski, 2002). For instance, eye
tracking has been employed from simple and fixed
scenarios (e.g., language reading (Holsanova et al.,
2006; Rayner, 1998)) to complex and dynamic cases
(e.g., driving (Kasneci et al., 2014)). Naturally, these
distinct fields usually have specific needs, which have
lead to the spawning of several proprietary systems
with different capabilities. In fact, Holmqvist et
al. (Holmqvist et al., 2011) report that they were
able to find 23 companies selling video-based eye-
tracking systems in 2009. Typically, these commer-
cial systems rely on closed-source software, offering
their eye tracker bundled with their own software so-
lutions. Although some companies offer technical
transparency, satisfying researchers that want to know
how data are gathered and analyzed by the proprietary
software, one issue persists: what to do if the soft-
ware fails to perform as desired. Facing such an is-
sue, a researcher has few options: 1) changing the ex-
perimental scenario until the software performs prop-

erly, which is clearly undesirable and counterproduc-
tive, or 2) switching to a different eye-tracking sys-
tem, which not only requires a considerable amount of
time and money but also offers no guarantees that the
alternative system will perform as desired. Few open-
source alternatives do exist, such as openEyes (Li
et al., 2006), PyGaze (Dalmaijer et al., 2014), and the
very promising Pupil (Kassner et al., 2014); however,
these focus on their own eye trackers or depend on
existing APIs from manufacturers.

In this paper, we introduce EyeRec, an open-
source data acquisition software for head-mounted
eye tracking. In fact, we started with the development
of EyeRec as we found the pupil detection algorithm
of a proprietary software of a mobile head-mounted
eye tracker to be underperforming in outdoor scenar-
ios. The key advantages of EyeRec are:

• Research Speed-up: the code is freely avail-
able. Users can easily replace built-in algorithms
to prototype their own algorithms or use the soft-
ware as is for data acquisition.

• Multiple Head-mounted Eye Tracking Hard-
ware: tested with several commercial eye trackers
and USB cameras. Any eye tracker that exposes

386
Santini, T., Fuhl, W., Kübler, T. and Kasneci, E.
EyeRec: An Open-source Data Acquisition Software for Head-mounted Eye-tracking.
DOI: 10.5220/0005758903840389
In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) - Volume 3: VISAPP, pages 386-391
ISBN: 978-989-758-175-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



its cameras via USB should work out of the box.
• Real-time: a low latency software pipeline allows

its usage in time-critical applications.
• State-of-the-art Pupil Detection: ElSe (Fuhl

et al., 2016), the top performer pupil detection al-
gorithm, is fully integrated. Moreover, to demon-
strate the ease of introducing new algorithms to
EyeRec, we have integrated the popular Star-
burst (Li et al., 2005), Świrski et al. (Świrski et al.,
2012), and ExCuSe (Fuhl et al., 2015) algorithms.

• Data Streaming: non-video data is streamed
in real time through UDP/TCP connections, al-
lowing easy integration with external buses (e.g.,
CAN).

• Full Open-source Software Stack: EyeRec fills
the data acquisition gap. Combined with open-
source eye-tracking data analysis software, such
as EyeTrace (Kübler et al., 2015), a full open-
source software stack is available.
The remainder of the paper is divided as follows.

Section 2 describes the overall design and perfor-
mance of EyeRec. Section 3 and Section 4 give details
on the built-in pupil detection and gaze estimation al-
gorithms, respectively. Section 5 concludes this work
and presents future work.

2 EyeRec

EyeRec is written in C++ and makes extensive use of
the OpenCV (Bradski et al., 2000) library for image
processing, VideoMan (Martirena, Javier B., 2015) li-
brary for video input, and the Qt (Qt Project, 2015)
framework for its Graphical User Interface (GUI).
At the moment, its development is focused on the
Windows version; nonetheless, porting to other plat-
forms should be possible as all components are cross-
platform.

EyeRec is designed to work with monocular head-
mounted eye trackers. Its architecture is based on a
master/slave paradigm, based on the idea that infor-
mation is most relevant when a new eye image be-
comes available. Thus, the eye camera is defined
as the master and the scene camera as a slave. It is
worth noticing that this master/slave scheme can be
extended to a binocular system by treating the sec-
ond eye camera as a slave. Whenever the master
frame grabber captures a new eye image and its as-
sociated timestamp, EyeRec fetches the latest scene
image from the slave frame grabber and bundles the
images and timestamp in a single entity hereby re-
ferred to as entry. Additionally, EyeRec can be con-
figured to undistort the field image if necessary, and

camera calibration is available. This completes the
image acquisition stage.

Afterwards, the newly generated entry is sent to
the image processing stage. At this stage, the pupil
detection algorithm is applied, and the resulting esti-
mated pupil position is used to estimate the gaze posi-
tion. Both pupil and gaze position estimates as well as
other useful information (e.g., pupil area) are added to
the entry, which is then forwarded to the data stream-
ing, data journaling, and GUI update stages.

At the data streaming stage, all non-frame data
present in the entry are transmitted through a TCP
or UDP server (based on user configuration). At the
data journaling stage, non-frame data are appended
to a journal file, and frame data are appended to the
pertinent videos. At the GUI update stage, pupil and
gaze position are overlaid on frame data, which are
then displayed to the user (see Figure 1).

Each of the aforementioned stages runs in its own
execution thread. Image acquisition, image process-
ing, and data streaming stages are all considered time-
critical and run with highest priority. Remaining
stages run with regular priority.

Figure 1: A subject with high degree of myopia (9.00D
SPH) and astigmatism (5.00D CYL) stares at the Record-
ing Start button in the GUI after a five point calibration. A
challenging situation due to the glasses black frame, thick
lenses, reflections, and eye camera position (off axis and not
centered relative to the subject’s eye).

An additional benefit from EyeRec’s master/slave
architecture is that the data rate is synchronized with
the master image sensor. Thus, provided that the mas-
ter sensor produces new images at a constant rate,
EyeRec will generate data entries at a constant rate,
including the most relevant (i.e., the latest available)
slave image. In comparison, the data recorded with
proprietary software during our tests exhibited a large
variance in the intersample period length, which sug-
gests that software buffers are used to synchronize the
data. This can be seem in Figure 2 and has a large im-
pact in derived data that depends on the timestamps

EyeRec: An Open-source Data Acquisition Software for Head-mounted Eye-tracking

387



(e.g., eye velocity) – for instance, eye velocity esti-
mates with the similar physical displacement displays
velocity discrepancies up to a factor of four times dur-
ing our tests when using the software vendor. As a re-
sult, algorithms that depend on this information, such
as the Velocity Threshold Identification (Salvucci and
Goldberg, 2000) for saccade/fixation classification,
can have their performance impaired.

-65%

-20%

Expected

+20%

+65%

1 101 201

In
te

rs
a
m

p
le

 P
e
ri

o
d
 (

m
s)

Samples

EyeRec
Vendor SW

Figure 2: Period between adjacent samples produced by Ey-
eRec and by proprietary software for the same eye tracker
device. While the proprietary software exhibits large vari-
ance, EyeRec’s variance is only due to the rounding of the
timestamp representation.

2.1 Data Format

Instead of reinventing the wheel, EyeRec follows the
same data format as described in the Dikablis Soft-
ware Version 2.0 User Manual. This makes possible
to use data recorded with EyeRec in data analysis soft-
ware that support Dikablis recordings. Upon record-
ing, eye and scene videos are recorded, and data is
stored in a journal file. Additionally, a file containing
points used for calibration is also generated.

2.2 Supported Eye Trackers

Currently, the software supports Ergoneers’ Dikablis
Essential and Dikablis Professional eye trackers (Er-
goneers, 2015). However, any eye tracker that ex-
poses its cameras as USB cameras should work effort-
lessly. For instance, EyeRec is able to use regular web
cameras instead of an eye tracker, although the built-
in pupil-detection methods are heavily dependent on
the quality of the eye image.

2.3 Pipeline Latency

We evaluated the latency of the software pipeline im-
plemented in EyeRec using a Dikablis Professional
eye tracker and a machine running Windows 8.1 with
an Intel R© CoreTM i5-4590 @ 3.30GHz CPU and
8GB of RAM. Table 1 shows the latency of each stage

relative to the moment a new eye image is available,
so each consecutive step includes the processing time
of prior steps. Data was collected during 10 minutes,
yielding 18,000 samples. The eye tracker used for this
evaluation provides 30 frames per second (for a single
eye). Therefore, the deadline for the real-time stages
is 33 ms, which is met with a slack larger than 20 ms.

Table 1: Latency relative to the moment a new eye image is
available for each stage of the software pipeline (measured
from 18,000 samples).

Stage Mean Latency (ms) Std. Dev.
Image Acquisition 1.36 0.32
Image Processing 9.16 0.83
Data Streaming 9.54 0.84

GUI Update 10.95 0.99
Data Journaling 17.25 2.07

2.4 Hardware Requirements

Given the slack for the reference machine, we esti-
mate that any Intel R© CoreTM machine with at least
2GB of RAM should be able to handle the software
requirements.

3 PUPIL DETECTION

Overall, we evaluated five candidates for the pupil de-
tection algorithm.

Starburst (Li et al., 2005) first removes the
corneal reflection and then selects pupil edge candi-
dates along rays extending from a starting point. Re-
turning rays are sent from the candidates found in the
previous step, collecting additional candidates. This
process is repeated iteratively using the average point
from the candidates as starting point until conver-
gence. Afterwards, inliers and outliers are identified
using the RANSAC algorithm, a best fitting ellipse is
determined, and the final ellipse parameters are deter-
mined by applying a model-based optimization.

Świrski et al. (Świrski et al., 2012) starts with
Haar features of different sizes for coarse positioning.
For a window surrounding the resulting position, an
intensity histogram is calculated and clustered using
the k-means algorithm. The separating intensity value
between both clusters is used as threshold to extract
the pupil. A modified RANSAC method is applied to
the threshold-border.

SET (Javadi et al., 2015) first extracts pupil pixels
based on a luminance threshold. The resulting image
is then segmented, and the segment borders are ex-
tracted using the Convex Hull method. Ellipses are

VISAPP 2016 - International Conference on Computer Vision Theory and Applications

388



fit to the segments based on their sinusoidal compo-
nents, and the ellipse closest to a circle is selected as
pupil.

ExCuSe (Fuhl et al., 2015) selects an initial
method (best edge selection or coarse positioning)
based on the intensity histogram of the input image.
The best edge selection filters a Canny edge image
based on morphologic operations and selects the edge
with the darkest enclosed value. For the coarse posi-
tioning, the algorithm calculates the intersections of
four orientations from the angular integral projection
function (Mohammed et al., 2012). This coarse posi-
tion is refined by analyzing the neighborhood of pix-
els in a window surrounding this position. The image
is thresholded, and the border of threshold-regions is
used additionally to filter a Canny edge image. The
edge with the darkest enclosed intensity value is se-
lected. For the pupil center estimation, a least squares
ellipse fit is applied to the selected edge.

ElSe (Fuhl et al., 2016) applies a Canny edge de-
tection method, removes edge connections that could
impair the surrounding edge of the pupil, and evalu-
ates remaining edges according to multiple heuristics
to find a suitable pupil ellipse candidate. If the initial
approach fails, the image is first downscaled. Then,
its response to a surface difference filter is multiplied
by its response to a mean filter, and the maximum re-
sponse position is taken. This position is then refined
on the upscaled image based on its pixel neighbor-
hood. As ElSe is the default algorithm in EyeRec (see
Section 3.1), its workflow is presented in more details
in Figure 3.

3.1 Detection Rates

Table 2 shows the detection rates of all evaluated al-
gorithms up to an Euclidean pixel distance of five to
the hand-labeled pupil center. The data set is taken
from (Fuhl et al., 2015; Świrski et al., 2012). All al-
gorithms are used with the parameters provided by the
authors. For Starburst, the starting location was set to
the center of the image.

Table 2: Detection rate up to an error of five pixels of all
integrated algorithms on all data sets proposed in (Świrski
et al., 2012) and (Fuhl et al., 2015), totaling 39,001 images.

SET Starburst Świrski ExCuSe ElSe

14.0% 9.8% 24.8% 58.4% 74.05%

Based on these results, we chose ElSe as the default
pupil detection algorithm. Nonetheless, Starburst,
Świrski, and ExCuSe are also available to demon-
strate EyeRec’s modularity and how easily one can
replace such essential parts.

4 GAZE ESTIMATION

The gaze estimation consists of a mapping of the pupil
position in the eye image to the scene plane. This is
typically done in two steps: calibration and projec-
tion. During calibration, a pupil position estimate is
collected while the subject focuses on a known posi-
tion in the scene image, forming a calibration pair.

4.1 Integrated Calibration

Typically, vendors use a fixed amount of calibration
pairs (e.g., D-Lab always uses 4 points (Ergoneers,
2014)). EyeRec is unrestricted in this regard as it can
collect as many calibration points as the user desires
and, therefore, can refine calibration as well as report
an estimate of calibration accuracy. Moreover, all col-
lected pairs of pupil estimates and scene image coor-
dinates are saved, making it possible to perform gaze
estimation offline, e.g., removing individual calibra-
tion pairs, in case the online gaze estimation did not
perform as desired.

4.2 Integrated Gaze Estimation

A gaze estimation based on the OpenCV
cv::findHomography function is integrated in
EyeRec. After a set of calibration pairs are col-
lected, they are fed into the cv::findHomography
function, yielding a calibration matrix. After suc-
cessful calibration, each pupil position estimate is
combined with the calibration matrix through the
cv::perspectiveTransform function to generate a gaze
position estimate. This procedure requires at least
four calibration points.

5 FINAL REMARKS

In this paper, we introduced a new data acquisi-
tion software for head-mounted eye trackers. Ey-
eRec has several key advantages over proprietary
software (e.g., openness) and other open-source al-
ternatives (e.g., multiple eye trackers support, im-
proved pupil detection algorithm). In this way, Ey-
eRec fills the data acquisition gap, enabling a full
open-source software stack for for acquisition and
analysis of eye-tracking data. The main shortcom-
ing at the moment is the fact that the performance of
the integrated gaze estimation method is not on par
with state-of-the-art implementations, which usually
consider device-specific effects. Besides solving the
aforementioned shortcoming, future work includes
automatic 3D eye model construction (Tsukada and

EyeRec: An Open-source Data Acquisition Software for Head-mounted Eye-tracking

389



Figure 3: ElSe (Fuhl et al., 2016) workflow. (1) input image. (2) Canny edge image. (3) The remaining edges after curvature
analysis, analysis of the enclosed intensity value, and shape. (4) The curvature with the most enclosing low intensity values
and the most circular ellipse is chosen as the pupil boundary. (5) The resulting pupil center estimate. In case the initial
estimate fails to produce a valid ellipse: the input image (6) is downscaled (7). (8) The downscaled image after convolution
with a mean and a surface difference filters. (9) The threshold for pupil region extraction is calculated and used for pupil area
estimation. (10) The resulting pupil center estimate.

Kanade, 2012; Świrski and Dodgson, 2013), support
for remote gaze estimation (Model and Eizenman,
2010; Yamazoe et al., 2008), additional calibration
methods (Guestrin and Eizenman, 2006; Pirri et al.,
2011), real-time eye movement classification based
on Bayesian mixture models (Kasneci et al., 2014;
Kasneci et al., 2015; Santini et al., 2016), automatic
blink detection, adding support for other eye track-
ers, and adding support for binocular systems as well
as external, user definable, triggers events. Feedback
from the community on future features is also wel-
come.
Source code, binaries for Windows, and extensive
documentation are available at:
www.perception.uni-tuebingen.de

REFERENCES

Bradski, G. et al. (2000). The OpenCV Library. Doctor
Dobbs Journal, 25(11):120–126.

Dalmaijer, E. S., Mathôt, S., and Van der Stigchel, S.
(2014). Pygaze: An open-source, cross-platform tool-
box for minimal-effort programming of eyetracking
experiments. Behavior research methods, 46(4).

Duchowski, A. T. (2002). A breadth-first survey of eye-
tracking applications. Behavior Research Methods,
Instruments, & Computers, 34(4):455–470.

Ergoneers (2014). D-Lab Manual.
Ergoneers (2015). Dikablis Glasses.

http://www.ergoneers.com/en/hardware/eye-
tracking/.

Fuhl, W., Kübler, T., Sippel, K., Rosenstiel, W., and Kas-
neci, E. (2015). Excuse: Robust pupil detection in
real-world scenarios. In Computer Analysis of Im-

ages and Patterns 2015. CAIP 2015. 16th Interna-
tional Conference. IEEE.

Fuhl, W., Santini, T., Kübler, T., and Kasneci, E. (2016).
Else: Ellipse selection for robust pupil detection in
real-world environments. In Proceedings of the Sym-
posium on Eye Tracking Research and Applications.
ACM. Forthcoming.

Guestrin, E. D. and Eizenman, M. (2006). General theory
of remote gaze estimation using the pupil center and
corneal reflections. Biomedical Engineering, IEEE
Transactions on, 53(6):1124–1133.

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R.,
Jarodzka, H., and Van de Weijer, J. (2011). Eye track-
ing: A comprehensive guide to methods and measures.
Oxford University Press.

Holsanova, J., Rahm, H., and Holmqvist, K. (2006). Entry
points and reading paths on newspaper spreads: com-
paring a semiotic analysis with eye-tracking measure-
ments. Visual communication, 5(1):65–93.

Javadi, A.-H., Hakimi, Z., Barati, M., Walsh, V., and
Tcheang, L. (2015). Set: a pupil detection method
using sinusoidal approximation. Frontiers in neuro-
engineering, 8.

Kasneci, E., Kasneci, G., Kübler, T. C., and Rosenstiel, W.
(2014). The applicability of probabilistic methods to
the online recognition of fixations and saccades in dy-
namic scenes. In Proceedings of the Symposium on
Eye Tracking Research and Applications, ETRA ’14,
pages 323–326, New York, NY, USA. ACM.

Kasneci, E., Kasneci, G., Kübler, T. C., and Rosenstiel, W.
(2015). Online recognition of fixations, saccades, and
smooth pursuits for automated analysis of traffic haz-
ard perception. In Koprinkova-Hristova, P., Mlade-
nov, V., and Kasabov, N. K., editors, Artificial Neu-
ral Networks, volume 4 of Springer Series in Bio-
/Neuroinformatics, pages 411–434. Springer Interna-
tional Publishing.

Kassner, M., Patera, W., and Bulling, A. (2014). Pupil: An

VISAPP 2016 - International Conference on Computer Vision Theory and Applications

390



open source platform for pervasive eye tracking and
mobile gaze-based interaction. In Proceedings of the
2014 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing: Adjunct Publication,
UbiComp ’14 Adjunct, pages 1151–1160, New York,
NY, USA. ACM.

Kübler, T., Sippel, K., Fuhl, W., Schievelbein, G., Aufre-
iter, J., Rosenberg, R., Rosenstiel, W., and Kasneci,
E. (2015). Analysis of eye movements with Eyetrace,
volume In press. Communications in Computer and
Information Science (CCIS), Biomedical Engineer-
ing Systems and Technologies. Springer International
Publishing.

Li, D., Babcock, J., and Parkhurst, D. J. (2006). openeyes:
A low-cost head-mounted eye-tracking solution. In
Proceedings of the 2006 Symposium on Eye Tracking
Research &Amp; Applications, ETRA ’06, pages 95–
100, New York, NY, USA. ACM.

Li, D., Winfield, D., and Parkhurst, D. J. (2005). Star-
burst: A hybrid algorithm for video-based eye track-
ing combining feature-based and model-based ap-
proaches. In Computer Vision and Pattern Recogni-
tion Workshops, 2005. CVPR Workshops. IEEE Com-
puter Society Conference on, pages 79–79. IEEE.

Martirena, Javier B. (2015). The VideoMan Library.
http://videomanlib.sourceforge.net/.

Model, D. and Eizenman, M. (2010). User-calibration-free
remote gaze estimation system. In Proceedings of the
2010 Symposium on Eye-Tracking Research & Appli-
cations, pages 29–36. ACM.

Mohammed, G. J., Hong, B. R., and Jarjes, A. A.
(2012). Accurate pupil features extraction based on
new projection function. Computing and Informatics,
29(4):663–680.

Pirri, F., Pizzoli, M., and Rudi, A. (2011). A general method
for the point of regard estimation in 3d space. In Com-
puter Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 921–928. IEEE.

Qt Project (2015). The Qt Framework. http://www.qt.io/.
Rayner, K. (1998). Eye movements in reading and informa-

tion processing: 20 years of research. Psychological
bulletin, 124(3):372.

Salvucci, D. D. and Goldberg, J. H. (2000). Identifying
fixations and saccades in eye-tracking protocols. In
Proceedings of the 2000 symposium on Eye tracking
research & applications, pages 71–78. ACM.

Santini, T., Fuhl, W., Kübler, T., and Kasneci, E. (2016).
Bayesian identification of fixations, saccades, and
smooth pursuits. In Proceedings of the Symposium
on Eye Tracking Research and Applications. ACM.
Forthcoming.

Świrski, L., Bulling, A., and Dodgson, N. (2012). Robust
real-time pupil tracking in highly off-axis images. In
Proceedings of the Symposium on Eye Tracking Re-
search and Applications, pages 173–176. ACM.

Świrski, L. and Dodgson, N. A. (2013). A fully-automatic,
temporal approach to single camera, glint-free 3d eye
model fitting. In Proceedings of ECEM 2013.

Tsukada, A. and Kanade, T. (2012). Automatic acquisi-
tion of a 3d eye model for a wearable first-person vi-

sion device. In Proceedings of the Symposium on Eye
Tracking Research and Applications, pages 213–216.
ACM.

Yamazoe, H., Utsumi, A., Yonezawa, T., and Abe, S.
(2008). Remote gaze estimation with a single camera
based on facial-feature tracking without special cali-
bration actions. In Proceedings of the 2008 Sympo-
sium on Eye Tracking Research & Applications, pages
245–250. ACM.

EyeRec: An Open-source Data Acquisition Software for Head-mounted Eye-tracking

391


