Skin Surface Reconstruction and 3D Vessels Segmentation in Speckle Variance Optical Coherence Tomography

Marco Manfredi, Costantino Grana, Giovanni Pellacani

Abstract

In this paper we present a method for in vivo surface reconstruction and 3D vessels segmentation from Speckle-Variance Optical Coherence Tomography imaging, applied to dermatology. This novel technology allows to capture motion underneath the skin surface revealing the presence of blood vessels. Standard OCT visualization techniques are inappropriate for this new source of information, that is crucial in early skin cancer diagnosis. We investigate 3D reconstruction techniques for better visualization of both the external and internal structure of skin lesions, as a tool to help clinicians in the task of qualitative tumor evaluation.

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 33(5):898-916.
  2. Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):679-698.
  3. Conroy, L., DaCosta, R. S., and Vitkin, I. A. (2012). Quantifying tissue microvasculature with speckle variance optical coherence tomography. Optics letters, 37(15):3180-3182.
  4. De Carvalho, N., Ciardo, S., Cesinaro, A., Jemec, G., Ulrich, M., Welzel, J., Holmes, J., and Pellacani, G. (2015). In vivo micro-angiography by means of speckle-variance optical coherence tomography (svoct) is able to detect microscopic vascular changes in naevus to melanoma transition. Journal of the European Academy of Dermatology and Venereology.
  5. Field, D. A. (1988). Laplacian smoothing and delaunay triangulations. Communications in Applied Numerical Methods, 4(6):709-712.
  6. Grana, C., Borghesani, D., and Cucchiara, R. (2012). Classbased color bag of words for fashion retrieval. In Multimedia and Expo (ICME), 2012 IEEE International Conference on, pages 444-449. IEEE.
  7. Hitzenberger, C. K. and Fercher, A. F. (1999). Differential phase contrast in optical coherence tomography. Optics Letters, 24(9):622-624.
  8. Holmes, J., Hattersley, S., Stone, N., Bazant-Hegemark, F., and Barr, H. (2008). Multi-channel fourier domain oct system with superior lateral resolution for biomedical applications. In Biomedical Optics (BiOS) 2008, pages 68470O-68470O. International Society for Optics and Photonics.
  9. Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., et al. (1991). Optical coherence tomography. Science, 254(5035):1178-1181.
  10. Jain, R. K. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature medicine, 7(9):987-989.
  11. Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction. In Proceedings of the fourth Eurographics symposium on Geometry processing, volume 7.
  12. Leitgeb, R., Hitzenberger, C., and Fercher, A. (2003). Performance of fourier domain vs. time domain optical coherence tomography. Optics Express, 11(8):889- 894.
  13. Lesage, D., Angelini, E. D., Bloch, I., and Funka-Lea, G. (2009). A review of 3d vessel lumen segmentation techniques: Models, features and extraction schemes. Medical image analysis, 13(6):819-845.
  14. Mahmud, M. S., Cadotte, D. W., Vuong, B., Sun, C., Luk, T. W., Mariampillai, A., and Yang, V. X. (2013). Review of speckle and phase variance optical coherence tomography to visualize microvascular networks. Journal of biomedical optics, 18(5):050901-050901.
  15. Manniesing, R., Velthuis, B., Van Leeuwen, M., Van der Schaaf, I., Van Laar, P., and Niessen, W. J. (2006). Level set based cerebral vasculature segmentation and diameter quantification in ct angiography.Medical image analysis, 10(2):200-214.
  16. Mariampillai, A., Standish, B. A., Moriyama, E. H., Khurana, M., Munce, N. R., Leung, M. K., Jiang, J., Cable, A., Wilson, B. C., Vitkin, I. A., et al. (2008). Speckle variance detection of microvasculature using swept-source optical coherence tomography. Optics letters, 33(13):1530-1532.
  17. Niemeijer, M., Garvin, M. K., van Ginneken, B., Sonka, M., and Abramoff, M. D. (2008). Vessel segmentation in 3d spectral oct scans of the retina. In Medical Imaging, pages 69141R-69141R. International Society for Optics and Photonics.
  18. Schmitz, L., Reinhold, U., Bierhoff, E., and Dirschka, T. (2013). Optical coherence tomography: its role in daily dermatological practice. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 11(6):499-507.
  19. Soares, J. V., Leandro, J. J., Cesar Jr, R. M., Jelinek, H. F., and Cree, M. J. (2006). Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. Medical Imaging, IEEE Transactions on, 25(9):1214-1222.
  20. Tankyevych, O., Talbot, H., Dokládal, P., and Passat, N. (2009). Direction-adaptive grey-level morphology. application to 3d vascular brain imaging. In Image Processing (ICIP), 2009 16th IEEE International Conference on, pages 2261-2264. IEEE.
  21. Viola, P. and Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2):137-154.
  22. Welzel, J., Lankenau, E., Birngruber, R., and Engelhardt, R. (1997). Optical coherence tomography of the human skin. Journal of the American Academy of Dermatology, 37(6):958-963.
  23. Wu, X., Luboz, V., Krissian, K., Cotin, S., and Dawson, S. (2011). Segmentation and reconstruction of vascular structures for 3d real-time simulation. Medical image analysis, 15(1):22-34.
Download


Paper Citation


in Harvard Style

Manfredi M., Grana C. and Pellacani G. (2016). Skin Surface Reconstruction and 3D Vessels Segmentation in Speckle Variance Optical Coherence Tomography . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 234-240. DOI: 10.5220/0005758702340240


in Bibtex Style

@conference{visapp16,
author={Marco Manfredi and Costantino Grana and Giovanni Pellacani},
title={Skin Surface Reconstruction and 3D Vessels Segmentation in Speckle Variance Optical Coherence Tomography},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={234-240},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005758702340240},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)
TI - Skin Surface Reconstruction and 3D Vessels Segmentation in Speckle Variance Optical Coherence Tomography
SN - 978-989-758-175-5
AU - Manfredi M.
AU - Grana C.
AU - Pellacani G.
PY - 2016
SP - 234
EP - 240
DO - 10.5220/0005758702340240