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Abstract: In this paper we study a version of Ramsey’s discrete time Growth Model where the evolution of Labor through
time is stochastic. Taking advantage of recent theoretical results in the field of Markov Decision Processes, a
first set of conditions on the model are established that guarantee a long-term stable behavior of the underlying
Markov chain.

1 INTRODUCTION

Ramsey’s Growth Model has a long and interesting
history. In order to give a context to the material of
the present paper, we briefly outline it.

The original model presented by Ramsey in (Ram-
sey, 1928) (formulated in communication with the
famous economist Keynes) analyzes optimal global
saving in a deterministic continuous time setting, and
it is no surprise that it is solved using Calculus of
Variations. Since then, several variants have appeared
in the Advanced Macroeconomics literature, but, as
Prof. Ekeland points out (one of the leading experts in
Mathematical Economics): “To the best of my knowl-
edge and understanding, none of the solutions pro-
posed for solving the Ramsey problem is correct with
one exception, of course, Ramsey himself, whose own
statement was different than the one which is now in
current use (Ekeland, 2010)”. On the contrary, the
discrete time setting allows the straightforward use of
Dynamic Programming techniques, and therefore, al-
lows both researchers and practitioners to focus on the
analysis of the model itself and its properties. The
deterministic case is very clearly stated and analyzed
in (Brida et al., 2015), (Le Van and Dana, 2003) and
(Sladký, 2012).

Ramsey’s seminal work on economic growth has
been extended in many ways, but, to the best of our
knowledge, the study of a random discrete time ver-
sion is still in its initial phase. Such study will allow

a fruitful interaction between economists and mathe-
matician that will lead to better simulations and con-
sequently, to a better understanding of the effects of
the random deviations in the growth of an economy
and its impact on the population. And, in this paper
a first random model is posed, where the population
grows in a stochastic manner.

In this paper a discrete-time stochastic Ram-
sey growth process is modeling as a discounted
Markov Decision Process (MDP) (Hernández-Lerma
and Lasserre, 1996) and (Jaśkiewicz and Nowak,
2011). The performance criterion of interest is the to-
tal discounted reward. The optimal control problem is
to determine a policy that optimizes the performance
criterion. The solution of the optimization problem is
analyzed through of the Euler Equation (EE) (Cruz-
Suárez and Montes-de Oca, 2008) and (Cruz-Suárez
et al., 2012). Later, the EE is applied to study the er-
godic behavior of the stochastic Ramsey growth pro-
cess.

2 THE MODEL

Consider an economy in which at each discrete time
t, t = 0,1, ..., there are Lt consumers (population or
labor), with consumption ct per individual, whose
growth is governed by the following difference equa-
tion:

Lt+1 = Ltηt , (1)
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it is assumed that initially the number of consumers,
L0, is known. In this case, {ηt} is a sequence of inde-
pendent and identical distributed (i.i.d) random vari-
ables. The random variable ηt , t ≥ 0, represents an
exogenous shock that affects the consumer popula-
tion, for example: epidemics, wars, natural disasters,
new technology, etc. Then, in this context, it will be
supposed that for each t ≥ 0: ηt > 0, almost surely.
Remark 2.1. In the literature of economic growth
models is usual to assume that the number of con-
sumers grow very slowly in time, see, for instance,
(Le Van and Dana, 2003) and (Sladký, 2012). Ob-
serve that the model presented in this paper is a
first step in an effort to weaken that constraint of the
model.

The production function for the economy is given
by

Yt = F(Kt ,Lt),

K0 is known,

i.e. the production Yt is a function of capital, Kt , and
labor, Lt , where the production function, F , is a ho-
mogeneous function of degree one. The output must
be split between consumptions Ct = ctLt and the gross
investment It , i.e.

Ct + It = Yt . (2)

Let δ∈ (0,1) be the depreciation rate of capital. Then
the evolution equation for capital is given by:

Kt+1 = (1−δ)Kt + It . (3)

Substituting (3) in (2), it is obtained that,

Ct − (1−δ)Kt +Kt+1 = Yt . (4)

In the usual way, all variables can be normalized
into per capital terms, namely, yt := Yt/Lt and xt :=
Kt/Lt . Then (4) can be expressed in the following
way:

ct − (1−δ)xt +Kt+1/Lt = yt = F(xt ,1).

Now, using (1) in the previous relation, it yields that

xt+1 = ξt(F(xt ,1)+(1−δ)xt − ct),

t = 0,1,2, ..., where ξt := (ηt)
−1.

Define h(x) := F(x,1)+(1−δ)x, x ∈ X := [0,∞),
h henceforth to be identified as the production func-
tion. Then, the transition law of the system is given
by

xt+1 = ξt(h(xt)− ct), (5)
x0 = x known, (6)

where ct ∈ [0,h(xt)] and {ξt} is a sequence of i.i.d.
random variables with a density function ∆.

Observation 2.2. Observe that, if xt = 0, for some
t ∈ {0,1,2, ..} then xk = 0 for each k ≥ t. This fact is
a consequence of relation (5), and in this case zero is
considered an absorbtion state.

A plan or consumption sequence is a sequence
π = {πn}∞

n=0 of stochastic kernel πn on the control set
given the history

hn = (x1,c1, · · · ,xn−1,cn−1,xn),

for each n = 0,1, · · · . The set of all plans will be de-
noted by Π.

Given an initial capital x0 = x ∈ X and a plan π ∈
Π, the performance index used to evaluate the quality
of the plan π is determined by

v(π,x) = Eπ
x

[
∞

∑
n=0

αnU(cn)

]
, (7)

where U : [0,∞)→ R is a measurable function known
as utility function and α ∈ (0,1) is a discount factor.

The goal of the controller is to maximize utility of
consumption on all plans π ∈Π, that is:

V (x) := sup
π∈Π

v(π,x),

x ∈ X .
Throughout of this paper the model will be called

a Stochastic version of the Ramsey Growth (SRG)
model.

The following assumptions it will be considered
in the rest of the document.
Assumption 2.3. The production function h, satis-
fies:

a) h ∈C2((0,∞)),
b) h is a concave function on X,
c) h′ > 0 and h(0) = 0.
d) Let h′(0) := lim

x↓0
h′(x). Suppose that h′(0)> 1 and

αh′(0)> E[ξ−1]. (8)

Assumption 2.4. The utility function U satisfies:

a) U ∈C2((0,∞),R), with U ′ > 0 and U ′′ < 0,
c) U ′(0) = ∞ and U ′(∞) = 0,
d) There exists a function ϑ on S such that E[ϑ(ξ)]<

∞, and∣∣U ′(h(s(h(x)− c)))h′(s(h(x)− c))s∆(s)
∣∣≤ ϑ(s),

(9)
s ∈ S, c ∈ (0,h(x)).

Observation 2.5. Observe that in Assumption 2.3 is
not considered the Inada condition in zero. In the lit-
erature, it is known to have the rather unrealistic im-
plication that each unit of capital must be capable of
producing an arbitrarily large amount of output with
a sufficient amount of labor (Kamihigashi, 2006).
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3 DYNAMIC PROGRAMMING
APPROACH

In this section it will be presented an analysis of
the optimization problem introduced in the previous
section. Dynamic Programming approach have been
used to study different type of problems and in various
context. In particular have been applied to Markov
Decision Processes (MDPs).

SRG can be identified as a MDP. In this case, the
space of states is X := [0,∞), the admissible action
space is A(x) := [0,h(x)],x ∈ X , in consequence, the
action space is A :=

⋃
x∈X

A(x) = [0,∞). The transition

law is given by the stochastic kernel, defined as

Q(B |xt = x,at = c) = Pr(xt+1 ∈ B |xt = x,at = c)

=
∫

B
w(x,y,c)dy,

with B ∈ B(X), (B(X) denotes the Borel sigma alge-
bra of X), where the function w : [0,∞)3 → [0,∞) is
defined as:

w(x,y,c) = ∆
(

y
h(x)− c

)
1

h(x)− c
, (10)

for x,y ∈ X , c ∈ [0,h(x)) and ∆ is the density function
of the sequence {ξt}. Define K := {(x,c)|x ∈ X ,c ∈
A(x)}. Finally, the reward-per-stage function is iden-
tified as the utility function, U : X → [0,∞), defined in
the previous section. Then the model is referred as the
quintuplet: M := (X ,A,{A(x) : x ∈ X},Q,U).

As it was mentioned above, a plan is a sequence
π = {πn}∞

n=0 of stochastic kernel defined on A given
the history of the process. Furthermore, it is assumed
that πn(C(xn)|hn) = 1, n = 0,1, · · · , this assumption
guarantee that in each decision epoch, it is possible to
choose an admissible action. A particular class in Π
is the class of stationary plans,

F := { f : X → A| f (x) ∈ [0,h(x)], for all x ∈ X}.
In this case, a stationary plan π = ( f , f , ...) is denoted
by f .

Under Assumption 2.3 and Assumption 2.4, for
each x ∈ X , it follows that:
(a) The optimal value function V satisfies the follow-

ing equation (optimality equation)

V (x) = sup
c∈A(x)

{
U(c)+α

∫ ∞

0
V (y)w(x,y,c)dy

}
.

(11)

(b) There exists and optimal stationary policy f ∈ F
such that

V (x) =U( f (x))+α
∫ ∞

0
V (y)w(x,y, f (x))dy.

(c) For every x ∈ X , vn(x) → V (x) when n → ∞,
where vn is defined by

vn(x) = sup
c∈A(x)

{
U(c)+α

∫
vn−1(y)w(x,y,c)dy

}
,

with v0(x) = 0.

Remark 3.1. The functions, vn, n≥ 0, defined on (c)
are known as value iteration functions, (Hernández-
Lerma and Lasserre, 1996).

4 MAIN RESULTS ABOUT SRG

4.1 Euler Equation

In this subsection it will be presented a functional
equation, which characterize the optimal value func-
tion. In the literature of MDP’s, this functional equa-
tion is known as Euler Equation (EE), (Cruz-Suárez
et al., 2012). The validity of EE is guaranteed due
to properties of differentiability of the optimal value
function and the optimal policy, (Cruz-Suárez and
Montes-de Oca, 2008). Then, it just is necessary to
verified that the optimal policy is interior, according
to Theorem 3.3 in (Cruz-Suárez et al., 2011), this fact
is verified in the following result.

Lemma 4.1. The optimal plan f satisfies that f (x) ∈
(0,h(x)), for each x > 0.

Proof. Let x > 0 fixed, if the optimal policy is f (·)≡
0, then

V (x) = v(0,x) =
U(0)
1−α

,

where v is defined in (7).
Since U and h are strictly increasing (see Assump-

tion 2.2 and 2.3), it is obtained that

V (x) =
U(0)
1−α

<U(h(x))+
α

1−α
U(0),

but this is a contradiction, given that

v(h,x) =U(h(x))+
α

1−α
U(0).

On the other hand, if h ∈F is the optimal policy,
then

V (x) = v(h,x)

= U(h(x))+
α

1−α
U(0).

Let g : [0,h(x)]→ R be a function defined as

g(c) :=U(c)+αE[U(h(ξ(h(x)− c)))]+
α2

1−α
U(0).

A Stochastic Version of the Ramsey’s Growth Model

325



Observe that g is continuous and strictly concave
function. Then, there exists an unique c ∈ [0,h(x)],
which maximizes to g. If c 6= h(x), then

V (x)≥ g(c)> g(h(x)) =V (x),

which is impossible. Therefore c = h(x).
Now, Assumptions 2.2 and 2.3 imply that if c ∈

(0,h(x)),

g′(c) =U ′(c)−αE[U ′(h(ξ(h(x)− c)))h′(ξ(h(x)− c))ξ],

it follows that

lim
c→h(x)

g′(c) =−∞.

Therefore, there exists c̃ ∈ (0,h(x)) such that
g′(c̃)< 0. This implies that g is decreasing in [c̃,h(x)]
which h(x) can not be the maximizer, i.e. it is a con-
tradiction.

Theorem 4.2. Under Assumption 2.2 and 2.3, it fol-
lows that:

a) V ∈ C2((0,∞),R) and the optimal plan f ∈
C1((0,∞)).

b) The value iteration functions satisfies

v′n(x)
h′(x)

= αE
{

v′n−1

[
ξ
(

h(x)−U ′
−1
(

v′n(x)
h′(x)

))]
ξ
}

,

for each x > 0, where U ′
−1
(·) is the inverse of

U ′(·) .
c) The optimal plan f satisfies the following Euler

equation:

U ′( f (x)) = αE[U ′(c∗(x))h′(ξ(h(x)− f (x)))ξ],

for each x > 0, where c∗(x) := f (ξ(h(x)− f (x))).

Proof. The proof of this result is a consequence of
Lemma 5.2 and Lemma 5.6 in (Cruz-Suárez et al.,
2011).

Remark 4.3. Observe that if f ∈ F satisfies (4.2) and

lim
n→∞

αnE f
x
[
h′(xn)U ′( f (xn))xn

]
= 0,

then f is an optimal plan.

4.2 Stability of the SRG

It is known (Hernández-Lerma and Lasserre, 1996)
that if f ∈ F is the optimal plan then the optimal pro-
cess {xn} is a Markov process, where

xn+1 = ξn(h(xn)− f (xn)),

n = 0,1,2, . . ., x0 = x ∈ X = [0,∞). In addition,

Q(B|x, f (x)) =
∫

B
w(x,y, f (x))dy

= E[IB (ξ(h(x)− f (x)))].

Furthermore, in the literature of economic growth
it was studied optimal process stability using Inada
conditions. However, (Nishimura and Stachurski,
2005) and (Stachurski, 2009) make use of the Euler
equation. In this spirit we present this subsection.

Define Γ for x ∈ (0,∞) as

Γ(x) := [U ′( f (x))h′(x)]1/2 + xp +1, (12)

where p > 1. Let us consider to Γ as a weight func-
tion.

Let BΓ(X) be the space of measurable and Γ-
bounded function on X with norm ‖·‖Γ defined as

‖g‖Γ := sup
x∈X

|g(x)|
Γ(x)

,

for a measurable function g on X . Let ϕ be a signed
measure defined on B(X). Then, for each g ∈ BL(X),
ϕg denotes

ϕg :=
∫

g(y)ϕ(dy).

Observe that for the transition Kernel Q, Qg has the
form

Qg =
∫

g(y)Q(dy|x, f (x)),

and the k-th transition kernel is

Qk(B|x, f (x)) =
∫

Q(B|y, f (y))Qk−1(dy|x, f (x)),

B∈B(X), for k≥ 1 with Q0 := δx, where δx is Dirac’s
measure on x ∈ X .

Let µ be a probability measure on B(X). The mea-
sure µ is invariant with respect to the Markov chain
{xn}, if µQ = µ, where

µQ(B) :=
∫

Q(B|y)µ(dy),B ∈ B(X).

Define for each measure ϕ on B(X)

‖ϕ‖Γ := sup
‖g‖Γ≤1

|ϕg| .

Definition 4.4. Given a set C ∈B(X). C is a small set
with respect to the Markov chain {xn}, if there exist a
finite measure µ on B(X) and n ∈ N, such that for
each x ∈C

Qn(B|x)≥ µ(B),

for each B ∈ B(X).
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Define for A ∈ B(X) the measure

Ξ(A) :=
∫

B

∆(s)ds.

Lemma 4.5. The optimal process {xn} of SRG is Ξ-
irreducible and strongly aperiodic.

Proof. Let B ∈ B(X) such that Ξ(B) > 0 and x > 0.
Then, we know that h(x)− f (x) > 0 because f is an
interior point in the corresponding interval. More-
over,

Pr(x1 ∈ B) =
∫

X

IB((h(x)− f (x))s)∆(s)ds,

where IB denotes the indicator function of the set B.
As ∆ is positive, it follows that Pr(x1 ∈ B)> 0. Con-
sequently, the optimal process Ξ is irreducible.
On the other hand, let a,b ∈ (0,∞), a < b and con-
sider C := [a,b]. Once again, due to the fact that the
optimal policy takes values in the interior of the corre-
sponding interval, it turns out that h− f is an increas-
ing function. In fact, as the optimal value function
V is concave, we conclude that V ′ is decreasing and,
by the envelope formula (Cruz-Suárez and Montes-de
Oca, 2008) it follows that:

V ′(x) =U ′(h(x)− f (x))h′(x).

If h− f is decreasing, for x,y ∈ X , x < y:

h(y)− f (y)≤ h(x)− f (x)

and, as both U ′ and h′ are decreasing and positive, we
get

U ′(h(x)− f (x))h′(x)≤U ′(h(y)− f (y))h′(y)

that is, V ′(x) ≤ V ′(y), contradiction. Then, h− f is
increasing. Consequently, for each x ∈C we have

0 < h(a)− f (b)≤ h(x)− f (x)≤ h(b)− f (b).

Then, due to ∆ is positive function,

m := inf
(x,s)∈C×C

∆
(

s
h(x)− f (x)

)
1

h(x)− f (x)
> 0.

for µ a measure on B ∈ B(X) defined by

µ(B) := m
∫

B

IC(x)dx,

we have
Q(B|x)≥ µ(B).

The set C is small, see Definition 4.4. Clearly µ(C)>
0: the process is strongly aperiodic.

Analogously to (Nishimura and Stachurski, 2005)
and (Stachurski, 2009), it is possible to show that the
optimal process is ergodically stable.

Lemma 4.6. Γ (see (12)) is a Lyapunov function.

Proof. Consider a ∈ R and

Na := {x ∈ (0,+∞)|Γ(x)≤ a}.
Suppose that a≤ 1, as Γ(x)> 0, for each x > 0, then
Na = /0 and hence its closure is compact. On the other
hand, if a > 1 and {xn} is a sequence in Na such that
xn→ x, due to the continuity of Γ it follows that x∈Na
and consequently, Na is a closed set. Due to Inada’s
condition on the model and the definition of Γ it is
immediate that Na is bounded and hence, compact,
and trivially, with compact closure.
As a is arbitrary we conclude that Γ is a Lyapunov
function.

Lemma 4.7. The optimal process {xn} converges Γ-
ergodically to a unique invariant probability measure
µ, that is, there exists non-negative constants R and ρ,
ρ < 1, such that for each k = 0,1, . . .

∥∥∥Qk−µ
∥∥∥

Γ
≤ Rρn. (13)

The main idea to prove the previous lemma is ap-
plying the Euler equation to show that Γ is a Lya-
punov function. Then, there exist constants λ and b
such that λ ∈ (0,1) and for each x ∈ (0,∞):

E[Γ(ξ(h(x)− f (x)))]≤ λΓ(x)+b.

Furthermore, there exists a measure ϕ on B(X) such
that the optimal process is ϕ-irreducible and aperiodic
strongly. Finally, the result follows of Theorem 16.1.2
in (Meyn and Tweedie, 2009).

Theorem 4.8. The RSL optimal process converges in
L1 to a random variable with probability measure µ
given in Lemma 4.7.

Proof. Let x0 = x ∈ X , {xn} be the optimal process.
It is known that there exists constants λ and b with
λ ∈ (0,1) such that E[xp

1 |x] ≤ λxp + b. Hence, for
n = 0,1, . . .,

E[xp
n+1|xn]≤ λxp

n +b. (14)

Iterating and applying standard conditional ex-
pectation properties in (14) for n = 0,1, . . ., and as
λ ∈ (0,1), it follows that for each n ∈ N:

E[xp
n+1]≤ xp +

b
1−λ

< ∞,

hence
sup

n
E[xp

n ]< ∞.
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Moreover, as {xn} is almost surely positive it fol-
lows that the optimal process is uniformly integrable
(see (Peligrad and Gut, 1999), Theorem 4.2, p. 215).
Furthermore, by Lemma 4.7 it is known that the se-
quence {xn} converges in distribution to the invariant
probability measure µ.

Finally, by Theorem 5.9, p. 224 in (Peligrad and
Gut, 1999), the result follows.

5 EXAMPLES: COBB-DOUGLAS
UTILITY

Consider the following utility function:

U(c) =
b
γ

cγ,

for c > 0, where b > 0 and γ = 1/3. The transition
law is determined by

xt+1 = ξt (xt −at) ,

at ∈ [0,xt ], t = 0,1,2, . . ., x0 = x ∈ (0,∞). Observe
that in this case the production function h(x) = x,
x ∈ (0,∞). Suppose that {ξt} is a sequence of i.i.d.
random variables independent of x0. Let ξ a generic
element of {ξt} and consider that ξ with log-normal
distribution with mean 3/2 and variance 1. Then:

µγ := E[ξγ] = e5/9

it is easy to see that 0 < αµγ < 1, where the discount
factor α < e5/9. Moreover

E
[
ξ−1]= e−1

and Assumption 2.2-d) holds.
Remark 5.1. Assumption 2.2-d) holds for a log-
normal distribution if and only if σ2 < 2µ where µ
and σ2 are mean and variance, respectively.

Define δ :=
(
αµγ
)1/(γ−1). It is shown in (Cruz-

Suárez et al., 2011) that

f (x) :=
(

δ−1
δ

)
x, (15)

x ∈ X , is the optimal plan.
Consider the process corresponding to the optimal

plan:
xt+1 = ξt (xt − f (xt))

t = 0,1,2, . . ., x0 = x ∈ X ; easy calculations show that

xt+1 =
ξtxt

δ
iterating this last equation we get

xt+1 =
x
δt

t−1

∏
i=0

ξi.

Taking the expectation and using the indepen-
dence of ξ0,ξ1, . . . ,ξt−1, it yields that

E [xt+1] =
x
µ

(µ
δ

)t
,

where µ := E [ξ] = e2.
Finally, if µ < δ then E[Xn] increasing indefinitely
whit respect the time; if µ > δ then E[Xn] decreasing
to zero; if µ = δ then E[Xn] = x/µ.

6 CONCLUSIONS

The study of the Ramsey Growth Model in a discrete
time and stochastic setting opens an interesting re-
search field, where not only stochastic labor, stochas-
tic depreciation or other variants may be studied. For
instance, we believe that a multidimensional case (for
instance, where labor is disaggregated into two sub-
populations, regarding their different saving capabil-
ities) may be studied combining his techniques with
the Euler Equation approach.
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