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Abstract: In this work, we propose agents that switch their behavioral strategy between rationality and reciprocity de-
pending on their internal states to achieve efficient team formation. With the recent advances in computer
science, mechanics, and electronics, there are an increasing number of applications with services/goals that are
achieved by teams of different agents. To efficiently provide these services, the tasks to achieve a service must
be allocated to agents that have the required capabilities and the agents must not be overloaded. Conventional
distributed allocation methods often lead to conflicts in large and busy environments because high-capability
agents are likely to be identified as the best team member by many agents, resulting in inefficiency of the entire
system due to concentration of task allocation. Our proposed agents switch their strategies in accordance with
their local evaluation to avoid conflicts occurring in busy environments. They also establish an organization in
which a number of groups are autonomously generated in a bottom-up manner on the basis of dependability
in order to avoid the conflict in advance while ignoring tasks allocated by undependable/unreliable agents.
We experimentally evaluate our proposed method and analyze the structure of the organization that the agents
established.

1 INTRODUCTION

Recent advances in information technologies such
as the Internet have enabled computerized systems
to achieve on-demand and real-time controls/services
using timely data captured in the real world. Exam-
ples of applications based on such viewpoints include
the Internet of Things (IoT) (Stankovic, 2014), the
Internet of Services (IoS) (Nain et al., 2010), sensor
networks (Glinton et al., 2008), and grid/cloud com-
puting (Foster, 2002). Tasks to achieve required ser-
vices in these applications are realized within teams,
i.e., by combining a number of different software and
hardware nodes or agents that have specialized func-
tions. In these systems, the nodes are massive, are
located in a variety of positions, and operate in the
Internet autonomously since they are usually created
by different developers. Even so, they have to be
appropriately identified by their functions and per-
formance and then be allocated the suitable and ex-
ecutable components of a task (called a subtask here-
after) to achieve it. Mismatching or excessive allo-
cations of subtasks to agents, which are autonomous
programs to control hardware/software and/or to exe-
cute the allocated subtasks, result in the delay or fail-

ure of services. The teams of agents for the required
tasks need to simultaneously be formed in a timely
manner for timely service provision.

The task allocation problem described above is a
fundamental problem in computer science and many
studies have been conducted in the multi-agent sys-
tems (MAS) context to examine it. For example,
coalitional formation is a theoretical approach in
which (rational) agents find the optimal coalitional
structure (the set of agent groups) that provides the
maximal utilities for a given set of tasks (Dunin-
Keplicz and Verbrugge, 2010; Sheholy and Kraus,
1998). However, this approach assumes that the sys-
tems are static, relatively small and unbusy because it
assumes the (static) characteristic function to calcu-
late the utility of an agent set. It also requires high
computational costs to find (semi-)optimal solutions,
making it impractical when the systems are large and
busy. Another approach that is more closely related to
our method is team formation by rational agents. In
this framework, a number of leaders that commit to
form teams for tasks first select the agent appropriate
for executing each of the subtasks on the basis of the
learning of past interaction and solicit them to form a
team to execute the task. Agents that receive a num-
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ber of solicitations accept one or a few of them de-
pending on their local viewpoints. When a sufficient
number of agents has accepted the solicitations, the
team can succeed in executing the target task. How-
ever, conflicts occur if many solicitations by leaders
are concentrated to only a few capable agents, espe-
cially in large and busy MAS, so the success rate of
team formation decreases in busy environments.

In the real world, people also often form teams to
execute tasks. Of course, we usually behave ratio-
nally, i.e., we decide who will provide the most util-
ity. However, if conflicts in forming teams are ex-
pected to occur and if no prior negotiation is possi-
ble, we often try to find reliable people with whom to
work in advance. Reliable people are usually identi-
fied through past success with cooperative work (Fehr
and Fischbacher, 2002). Furthermore, if the oppor-
tunities for group work are frequent, we try to form
implicit or explicit collaborative structures based on
(mutual) reliability. In an extreme case where team
work with unreliable people is required, we may ig-
nore or understate offers for the sake of possible fu-
ture proposals with more reliable people. Such be-
havior based on reciprocity may be irrational because
offers from non-reciprocal persons are expected to be
rewarding in at least some way. However, it can sta-
bilize collaborative relationships and reduce the pos-
sibility of conflicts in team formations. Thus, we can
expect steady benefits in the future through working
based on reciprocity. To avoid conflicts and improve
efficiency in group work in computerized systems, we
believe that agents should identify which agents are
cooperative and build the agent network on the basis
of mutual reliability that is appropriate for the patterns
and structures of the service requirements.

To avoid conflicts in team formation in large and
busy MAS, we propose a computational method of
enabling efficient team formations that have fewer
conflicts (thereby ensuring stability) by autonomously
generating reliability from reciprocity. The proposed
agents switch between two behavioral strategies, ra-
tionality and reciprocity: they initially form teams ra-
tionally and identify reliable agents through the suc-
cess of past team works and then identify a number
of reliable agents that behave reciprocally. Of course,
they return to the rational strategy if the reliable re-
lationships are dissolved. The concept behind this
proposal is that many conflicts occur in the regime of
only rational agents because such agents always pur-
sue their own utilities. Conversely, the regime of only
reciprocal agents experiences less conflict but seems
to constrain the behavior of some agents in the co-
operative structure without avail. We believe that the
appropriate ratio between rationality and reciprocity

will result in better performances. However, the re-
lationship between the ratios and performance, and
which agents in an agent network should behave ra-
tionally, remains to be clarified. Thus, we propose
agents that switch strategies in a bottom-up manner
by directly observing the reciprocal behavior of oth-
ers and the success rates of team formation.

This paper is organized as follows. In the next
section, we describe related work in task allocation
and reciprocity in human society. Section 3 presents
the model of our problem and framework and Sec-
tion 4 describes the proposed agents that adaptively
switch their behavioral strategies. Then, in Section 5
we experimentally evaluate the performance of team
formation with the regime of the proposed agents by
comparing it with those with regimes of only rational
agents and only cooperative agents with static collab-
orative relationships. We also investigate how the ra-
tios between rational and reciprocal agents vary ac-
cording to the workload. We conclude in Section 6
with a brief summary and mention of future work.

2 RELATED WORK

Achieving allocations using a certain negotiation
method or protocol is a fundamental approach in the
MAS research. The conventional contract net proto-
col (CNP) (Smith, 1980) approach and its extensions
has been studied by many researchers. For exam-
ple, Sandholm (Sandholm and Lesser, 1995) extended
CNP by introducing levels of commitment to make a
commitment breakable with some penalty. One of the
key problems in negotiation protocols is that the num-
ber of messages exchanged for agreement increases
as the number of agents increases. Thus, several stud-
ies have attempted to reduce the number of messages
and thereby improve performance (Parunak, 1987;
Sandholm and Lesser, 1995). Although recent broad-
band networks have eased this problem at the link
level, agents (nodes) are now overloaded by exces-
sive messages, instead. Furthermore, it has been
pointed out that the eager-bidder problem, where a
number of tasks are announced concurrently, occurs
in large-scale MAS , in which case CNP with lev-
els of commitment does not work well (Schillo et al.,
2002). Ishida (Gu and Ishida, 1996) also reported that
busy environments negatively affect the performance
of CNP. Thus, these methods cannot be used in large-
scale, busy environments.

Coalitional formation is a theoretical approach
based on an abstraction in which agents find the op-
timal coalitional structure that provides the maximal
utilities for a given set of tasks (Dunin-Keplicz and
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Verbrugge, 2010; Sheholy and Kraus, 1998; Sims
et al., 2003; Sless et al., 2014). Although this tech-
nique has many applications, it assumes static and
relatively small environments because high compu-
tational costs to find (semi-)optimal solutions are re-
quired and the static characteristic function for pro-
viding utilities of agent groups is assumed to be
given. Market-based allocation is another theoreti-
cal approach based on game theory and auction pro-
tocol. In this approach, information concerning allo-
cations is gathered by auction-like bidding. Although
it can allocate tasks/resources optimally in the sense
of maximizing social welfare, it cannot be applied to
dynamic environments where optimal solutions fre-
quently vary. Team formation (or coalitional forma-
tion in a task-oriented model) is another approach in
which individual agents identify the most appropri-
ate member agent for each subtask on the basis of the
learning of functionality and the capabilities of other
agents (Coviello and Franceschetti, 2012; Hayano
et al., 2014; Genin and Aknine, 2010; Abdallah and
Lesser, 2004). However, this may cause conflicts in
large-scale and busy MAS, as mentioned in Section 1.
Our aim is to reduce such conflicts by building upon
our previous work (Hayano et al., 2014) and introduc-
ing agents that switch from rational behavior to recip-
rocal behavior (and vise versa) on the basis of results
of past collaboration.

Many studies in computational biology, sociology,
and economics have focused on the groups that have
been organized in human societies (Smith, 1976). For
example, many studies have tried to explain irrational
behaviors for collaboration in group work using reci-
procity. The simplified findings of these studies are
that people do not engage in selfish actions toward
others and do not betray those who are reciprocal and
cooperative, even if selfish/betraying actions could re-
sult in higher utilities (Gintis, 2000; Fehr et al., 2002;
Panchanathan and Boyd, 2004). For example, Pan-
chanathan and Boyd (Panchanathan and Boyd, 2004)
stated that cooperation could be established from in-
direct reciprocity (Fehr and Fischbacher, 2002), while
the authors of (Fehr et al., 2002; Gintis, 2000) insisted
that fairness in cooperation may produce irrational be-
havior because rational agents prefer a higher payoff
even though it may reduce the payoff to others. How-
ever, agents do not betray relevant reciprocal agents
because such a betrayal would be unfair. Fehr and
Fischbacher (Fehr and Fischbacher, 2002) demon-
strated how payoffs shared among collaborators af-
fected strategies and found that punishment towards
those who distribute unfair payoffs is frequently ob-
served, although administering the punishment can be
costly (Fehr and Fischbacher, 2004). In this paper,

we attempt to introduce the findings above into the
behaviors of computational agents.

3 MODEL

3.1 Agent and Tasks

We use a simpler model for representing tasks and the
associated utilities than that used in (Hayano et al.,
2014) because our focus is more on identifying which
learning parameters and mechanisms contribute to the
self-organization of groups for team formation.

Let A = {1, . . . ,n} be a set of agents. Agent i ∈A
has its associated resources (corresponding to func-
tions or capabilities) Hi = (h1

i , . . . ,h
p
i ), where hk

i is 1
or 0 and p is the number of resource types. Parame-
ter hk

i = 1 means that i has the capability for the k-th
resources. Task T consists of a number of subtasks
ST = {s1, . . . ,sl(T )}, where l(T ) is a positive integer.
If there is no confusion, we denote l = l(T ) simply.
Subtask s j requires some amount of resources, which
is denoted by (r1

s j
, . . . ,rp

s j), where rk
s j
= 0 or 1 and

rk
s j
= 1 means that k-th resource is required to execute

s j. Agent i can execute s j only when

hk
i ≥ rk

j for 1≤ ∀k ≤ p

is satisfied. We often identify subtask s and its asso-
ciated resource s = (r1

s , . . . ,r
p
s ). We can say that task

T is executed when all the associated subtasks are ex-
ecuted.

3.2 Execution by a Team

Task T is executed by a set of agents by appropriately
allocating each subtask to an agent. A team for exe-
cuting task T is defined as (G,σ,T ), where G is the
set of agents. Surjective function

σ : ST −→ G

describes the assignment of ST where subtask s ∈ ST
is allocated to σ(s) ∈ G. We assume that σ is a one-
to-one function for simplicity, but we can omit this
assumption in the discussion below. The team for
executing T has been successfully formed when the
conditions

hk
σ(s) ≥ rk

s (1)

hold for ∀s ∈ ST and 1≤ ∀k ≤ p.
After the success of team formation for task T ,

the team receives the associated utility uT ≥ 0. In
general, the utility value may be correlated with, for
example, the required resources and/or the priority.
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However, here we focus on improving the success rate
of team formation by autonomously establishing re-
liable groups, so we simplify the utility calculation
and distributions; hence, all agents involved in form-
ing the team receive uT = 1 equally when they have
succeeded but receive uT = 0 otherwise. Note that
agents are confined to one team and cannot join an-
other team simultaneously. This assumption is rea-
sonable in some applications: for example, agents in a
team are often required to be synchronized with other
agents. Another example is in robotics applications
where the physical entities are not sharable due to
spatial restrictions (Zhang and Parker, 2013). Even
in a computer system that can schedule multiple sub-
tasks, selecting one team corresponds to the decision
on which subtasks should be done first.

3.3 Forming Teams

For a positive number λ, λ tasks per tick are requested
by the environment probabilistically and stored in the
system’s task queue Q = 〈T1,T2, . . .〉, where Q is an
ordered set and tick is the unit of time used in our
model. Parameter λ is called the workload of the sys-
tem. Agents in our model are in either an inactive or
active state, where an agent in the active state is in-
volved in forming a team and otherwise is inactive.
Inactive agents first decide to play a role, leader or
member; how they select the role is discussed later.

Inactive agent i playing a leader role picks up task
T from the head of Q , and becomes active. If i can-
not find any task, it stays inactive. Active agent i then
finds subtask s ∈ ST that i can execute. Then, i iden-
tifies |ST |− 1 agents to allocate subtasks in ST \ {s}.
(If i cannot find any executable subtask in ST , it must
identify |ST | agents. In our explanation below, we as-
sume that i can execute one of the subtasks, but we
can omit this assumption if need.) How these agents
are identified will be discussed in Section 4. The set
of i and the identified agents is called the pre-team
and is denoted by Gp

T . Agent i sends the agents in Gp
T

messages soliciting them to join the team and then
waits for the response. If the agents that accept the
solicitations satisfy condition (1), the team (G,σ,T )
is successfully formed, where G is the set of agents
to which the subtask in ST is allocated, and the as-
signment σ is canonically defined on the basis of the
acceptances. Then, i notifies G \ {i} of the success-
ful team formation and all agents in G continue to be
active for dT ticks for task execution. At this point,
i (and agents in G) return to inactive. However, if an
insufficient number of agents for T accept the solici-
tation, the team formation by i fails and i discards T
and notifies the agents of the failure. The agents in G

then return to inactive.
When an agent i that decides to play a member,

it looks at the solicitation messages from leaders and
selects the message whose allocated subtask is exe-
cutable in i. The strategy for selecting the solicitation
message is described in Section 4. Note that i selects
only one message, since i can join only one team at
a time. Agent i enters the active state and sends an
acceptance message to the leader j of the selected so-
licitation and rejection messages to other leaders if
they exist. Then, i waits for the response to the accep-
tance. If it receives a failure message, it immediately
returns to the inactive state. Otherwise, i joins the
team formed by j and is confined for duration dT to its
execution, after which it receives uT = 1 and returns
to inactive. If i receives no solicitation messages, it
continues in the inactive state.

Note that we set the time required for forming a
team to dG ticks, thus, the total time for executing a
task is dG + dT ticks. We also note that leader agent
i can select pre-team members redundantly; for ex-
ample, i selects R ≥ 1 agents for each subtask in ST
(where R is an integer). This can increase the suc-
cess rate of team formation but may restrain other
agents redundantly. We make our model simpler by
setting R = 2, as our purpose is to improve efficiency
by changing behavioral strategies.

4 PROPOSED METHOD

Our agents have three learning parameters. The first
is called the degree of expectation for cooperation
(DEC) and is used to decide which agents they should
work with again. The other two are called the degree
of success as a leader (DSL) and the degree of success
as a member (DSM) and are used to identify which
role is likely to be successful for forming teams. We
define these parameters and explain how agents learn
and use them in this section.

4.1 Learning for Cooperation

Agent i has the DEC parameter ci j for ∀ j (∈ A \{i})
with which i has worked in the same team in past. The
DEC parameters are used differently depending on
roles. When i plays a leader, i selects pre-team mem-
bers in accordance with the DEC values, i.e., agents
with higher DEC values are likely to be selected. How
pre-team members are selected is discussed in Sec-
tion 4.3. Then, the value of ci j is updated by

ci j = (1−αc) · ci j +αc ·δc, (2)
where 0≤ αc ≤ 1 is the learning rate. When j replies
to i’s solicitation message with an acceptance, ci j is
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updated with δc = 1; otherwise, it is updated with
δc = 0. Therefore, j with a high DEC value is ex-
pected to accept the solicitation by i.

After i agrees to join the team that is initiated by
leader j, i also updates ci j using Eq. (2), where δc is
the associated utility uT , i.e., δc = 1 when the team
is successfully formed and δc = 0 otherwise. Agent i
also selects the solicitation messages according to the
DEC values with the ε-greedy strategy.

After the value of ci j in i has increased, j may
become uncooperative for some reasons. To forget
the outdated cooperative behavior, the DEC values are
slightly decreased in every tick by

ci j = max(ci j−νF ,0), (3)

where 0≤ νF � 1.

4.2 Role Selection and Learning

Agent i learns the values of DSL and DSM to decide
which role, leader or member, would result in a higher
success rate of team formation. For this purpose, after
the team formation trial for task T , parameters eleader

i
and emember

i are updated by

eleader
i = (1−αr) · eleader

i +αr ·uT and

emember
i = (1−αr) · emember

i +αr ·uT ,

where uT is the received utility value that is 0 or 1 and
0 < αr < 1 is the learning rate for the DSL and DSM.

When i is inactive, it compares the values of DSL
and DSM: specifically, if eleader

i > emember
i , i decides to

play a leader, and if eleader
i < emember

i , i plays a mem-
ber. If eleader

i = emember
i , its role is randomly selected.

Note that when i selects the leader as the role but can
find no task in Q , i does nothing and will select its
role again in the next tick.

4.3 Agent Switching Behavioral
Strategies

Our main objective in this work is to propose a new
type of agent that switches its behavioral strategy, ra-
tional or reciprocal, depending on its internal state. In
this section, we first discuss how worthy-to-cooperate
agents (called dependable agents) are identified and
then go over the behaviors of rational and reciprocal
agents. Finally, we explain how agents select their
behavioral strategies.

4.3.1 Dependable Agents

Agent i has the set of dependable agents Di ⊂ A \{i}
with the constraint |Di| ≤ XF , where XF is a positive

integer and is the upper limit of dependable agents.
The elements of Di are decided as follows. For the
given threshold value TD > 0, after ci j is updated, if
ci j ≥ TD and |Di| < XF are satisfied, i identifies j as
dependable by setting Di = Di ∪{ j}. Conversely, if
∃k ∈ Di s.t. cik < TD, k is removed from Di.

4.3.2 Behaviors of Agents with Rational and
Reciprocal Strategies

Behavioral strategies mainly affect to decide collab-
orators. Both leader agents with rational and recip-
rocal behavioral strategies select the members of the
pre-team based on the DEC values with ε-greedy se-
lection. Initially, agent i sets Gp

T = {i} and allocates
itself to the subtask s0 (∈ ST ) executable in i.1 Then,
S̃T = ST \ {s0} and i sorts the elements of A by de-
scending order of the DEC values. For each subtask
sk ∈ S̃T , i seeks from the top of A an agent that can ex-
ecute sk and is not in Gp

T and then adds it to Gp
T with

probability 1− ε. However, with probability ε, the
agent for s ∈ Gp

T is selected randomly. If R = 1, the
current Gp

T is the pre-team member for T . If R > 1,
i repeats the seek-and-add process for subtasks in S̃T
R−1 times.

Behavioral differences appear when agents play
members. An agent with rational behavioral strat-
egy selects the solicitation message sent by the leader
whose DEC value is the highest among the received
ones. An agent with reciprocal behavioral strategy
selects the solicitation message in the same way but
ignores any solicitation messages sent by leaders not
in Di. Note that by ignoring non-dependable agents,
no solicitation messages may remain in i (i.e., all so-
licitations will be declined). We understand this sit-
uation in which i does not accept the messages for
the sake of possible future proposals from dependable
agents, and thus, we can say that this ignorance may
be irrational. All agents also adopt the ε-greedy se-
lection of solicitation messages, whereby the selected
solicitation message is replaced with another message
randomly selected from the received messages with
probability ε.

4.4 Selection of Behavioral Strategies

When agent i decides to play a member, it also de-
cides its behavioral strategy on the basis of the DSM
values emember

i and Di. If the DSM emember
i is larger

than the parameter Tm (> 0), and if Di 6= /0, i adopts
the reciprocal strategy; otherwise, it adopts rational-
ity. The parameter Tm is a positive number and is used
in the threshold for the criterion of whether or not i

1s0 may be null, as mentioned before.
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Figure 1: Team formation performance.

has had a sufficient degree of success working as a
member. Thus, Tm is called the member role thresh-
old for reciprocity. When i plays a leader, its strategy
is not affected by how members are selected.

We have to note that i memorizes dependable
agents on the basis of DEC values that reflect the suc-
cess rates of team formation so that it can expect the
utility after that. In this sense, the DEC values are
involved in rational selections, and therefore depend-
able agents are identified on the basis of rational deci-
sion. In our framework, after a number of dependable
agents are identified, i changes its behavior. There-
fore, we can say that at first, i pursues only the utili-
ties, but when it has identified a number of dependable
agents that may bring utilities, i tries not only to work
with them preferentially but also to reduce chances of
unexpected uncooperative behaviors.

5 EXPERIMENTS

5.1 Experimental Setting

We investigated the performance (the success rates) of
team formation in the society of the proposed agents,
the structure of behavioral strategies, and the net-
works of dependability and team formation achieve-
ment. We also experimentally compared it with the
performance of those in the society of rational agents
and that of the proposed agents of the static group
regime whose structures are initially given and fixed.
A rational agent always behaves on the basis of ratio-
nality, thus corresponding to the case where XF = 0.
The agents with the static group regime are initially
grouped into teams of six random agents, and any
agent that initiates a task always allocates the associ-
ated subtasks to other agents in the same team. Thus,
this type of agent corresponds to the case where Di is
fixed to the members of the same group and R = 1.
We call this type of agent the static group-structured
agents or the SGS agents.

Let the number of agents |A | be 500 and the num-
ber of resource types p be six. The amount of k-th

Table 1: Parameter values in experiments.

Parameter Value
Initial value of DEC ci 0.1

Initial value of DSL eleader
i 0.5

Initial value of DSM emember
i 0.5

Learning rate α (= αc, αr) 0.05
Epsilon in ε-greedy selection ε 0.01

Decrement number γF 0.00005
Threshold for dependability TD 0.5

Max. number of dependable agents XF 5
Member role threshold for reci-
procity Tm

0.5

resource of agent i, hk
i , and the amount of the k-th re-

source required for task s, rk
s , is 0 or 1. We assume

that at least one resource in Hi is set to 1 to avoid
null-capability agents. On the other hand, only one
resource is required in s, so ∃k,rk

s = 1, and rk′
s = 0

if k′ 6= k. A task consists of three to six subtasks, so
l(T ) (= |ST |) is the integer between three and six. The
duration for forming a team, dG, is set to two and the
duration for executing a task, dT , is one. Other param-
eters used in Q-learning for agent behaviors are listed
in Table 1. Note that while ε-greedy selection and Q-
learning often used for parameter learning, where we
use the shared learning rate α and random selection
rate ε. The experimental data shown below are the
mean values of ten independent trials.

5.2 Performance Results

Figure 1 plots the number of successful teams ev-
ery 50 ticks in societies consisting of the SGS, ra-
tional, and proposed agents when workload λ is 20,
25, and 35. Note that since all agents individually
adopted ε-greedy selection with ε = 0.01 when se-
lecting member roles and solicitation messages, ap-
proximately four to five tasks per tick according to
the value of workload λ (so, 200 to 250 tasks every
50 ticks) were used for challenges to find new so-
lutions, but in these situations, forming teams was
likely to fail. We also note that λ = 20, 25, and 35
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Figure 2: Performance improvement ratios.

corresponds to the environment where work is low-
loaded, balanced (slightly lower than the system’s
limit of performance when λ is around 25 and 30),
and overloaded, respectively. Figure 1 shows that the
performance with the proposed agents always outper-
formed those with other strategies. When the system
load was low, the performance with the SGS agents
was (slightly lower but) almost identical to that with
the proposed agents. However, when λ = 25 and 35,
their performance gradually decreased. In the busy
environment, an agent that learned to play a leader
in a group encountered many team formation failures,
thereby starting to learn that it was ineffective as a
leader. In such cases, other agents started to play
the leader roles instead, but among the SGS agents,
groups are static and no leaders existed in a number
of groups. Thus, the number of team formation fail-
ures increased. Because many conflicts occurred in
the society of only the rational agents, their perfor-
mance was always lower than that with the proposed
agents. However, in a busy environment (λ = 35), the
performance by the proposed agents also reached a
ceiling and their difference became smaller.

As Fig. 1 suggests that the improvement ratios
might vary depending on the work load, we plotted
the ratios in Fig. 2, where the improvement ratio I(str)
was calculated as

I(str) =
N(proposed)−N(str)

N(proposed)
×100,

where N(str) is the number of successful teams per
50 ticks with agents whose behavioral strategy is str
(“proposed,” “SGS,” or “rational.”

Figure 2 indicates that the performance improve-
ment ratio of the society of the SGS agents, I(SGS),
was small when the workload was low (λ ≤ 20) but
that it monotonically increased in accordance with the
system’s workload when λ > 20. The improvement
ratios to the rational agents I(rational) depict a char-
acteristic curve, becoming maximal around λ = 25
and 30, which is near but below the system’s limit,
as mentioned above. We think this is the effect of au-
tonomous organization in the society of the proposed
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Figure 4: Stability of Behavioral Strategies.

method, as reported in (Corkill et al., 2015); we will
discuss this topic later. Finally, when the workload
was low (λ less than ten), we could not observe any
clear difference in their performances since conflict in
team formation rarely occurred.

5.3 Behavioral Analysis

To understand why teams were effectively formed
in the society of the proposed agents, we first ana-
lyzed the characteristics of the behavioral strategy and
role selections. Table 2 lists the numbers of leader
agents in which eleader

i > emember
i were satisfied at the

time of 100,000 ticks (so they played leaders) when λ
was varied. As shown, we found that the number of
leader agents slightly decreased when the workload
increased, but were almost invariant around 100, and
thus, 400 agents were likely to play member roles.
The number of subtasks required to complete a single
task fixed between three and six with uniform prob-
ability and the structures of the task distribution did
not change in our experiments. Hence, the number of
leaders that initiate the team formation also seems to
be unchanged.

On the other hand, behavioral strategies were se-
lected differently depending on the workload. The re-
lationships between the workload and the structures
of behavioral strategies at the end of the experiment
are plotted in Fig. 3. It indicates that reciprocity was
selected by over half of the agents, but this number
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Table 2: Number of leaders.

Workload (λ) 10 15 20 25 30 35 40
Number of leaders 107.8 104.7 102.4 99.5 97.9 97.3 97.6

Figure 5: Structure of dependability.

gradually decreased with the increase of the work-
load. Furthermore, in Fig. 4 we plot the number of se-
lected behavioral strategies during 95,000 to 100,000
ticks, where the agents that stably selected, for exam-
ple, reciprocity mean that they always selected reci-
procity during 95,000 to 100,000 ticks and “fractional
strategy” means agents that changed their strategy at
least once during this period.

First, we can observe that the number of agents
stably selecting reciprocity as their behavioral strat-
egy decreased. This is expected because they have
a greater chance of forming teams as the workload
increases, and thus they may have more chances to
change their strategies. Nevertheless, the number
of agents stably selecting rationality barely changed
around 30% of the agent population and if anything
slightly increased in accordance with the workload.
Hence, we can say that a number of the recipro-
cal agents occasionally become rational agents and
worked like freelancers. We discuss this further in
Section 5.5.

5.4 Structural Analysis

We investigated the structure of dependability based
on the elements of Di for ∀i ∈ A . The structure
of the proposed agents in a certain trial at the time
of 100,000 ticks is shown in Fig. 5, where λ = 25
and green nodes are agents with rationality that were

Figure 6: Structure based on formed teams (all agents).

Figure 7: Structure based on formed teams (reciprocal).

isolated. Blue and red nodes correspond to agents
with reciprocity that played members (blue) and lead-
ers (red). We can see that, although the upper limit
of dependable agents XF is set to five, all mem-
ber agents with reciprocity have only one dependable
agent. This is because agents can belong to only one
team at the same time.

We believe that all agents formed their team on the
basis of the network of dependability. Figure 6 shows
the network based on teams actually formed during
the period from 95,000 to 100,000 ticks. A link be-
tween agents is generated only when leader-member
relationships were established more than or equal to
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ten times. Figure 6 appears dense and complicated
because agents with rationality (green nodes) pursued
their utilities and formed with any agents. Thus, in
Fig. 7 we omit the green nodes from Fig. 6. This fig-
ure shows when compared with Fig. 5 that almost all
reciprocal agents formed teams with only dependable
agents having higher priority. However, they were
sometimes required to form larger teams, and there-
fore solicited non-dependable agents that were not
in Di. The agents selected in this situation behaved
rationally. Note that there is a single but relatively
larger connected component in the upper part of Fig 7.
A number of the reciprocal agents in this connected
component changed their behavioral strategies dur-
ing the observation period. However, their selected
leaders were limited, so it was neither dense nor com-
plicated like the network in Fig. 6, where a majority
of rational agents were connected with more than ten
leader agents during the period.

5.5 Discussion

We believe that the mixture of reciprocity and ratio-
nality produces an efficient and effective society. The
appropriate ratio between these behavioral strategies
is still unknown and probably depends on a variety of
factors such as task structure, workload, and topology
of the agent network. Our study is the first attempt to
pursue this ratio by introducing autonomous strategy
decision making through social and local efficiency.
We also believe that bottom-up construction of or-
ganization, such as the group/association structures
based on dependability discussed in this paper, is an-
other important issue to achieve a truly efficient soci-
ety of computer agents like a human society. Thus,
another aim of this study is to clarify the mechanism
to establish such an organization in a bottom-up man-
ner. Our experimental results suggest that reciprocity
is probably what generates the organization, but fur-
ther experimentation is required to clarify this.

As shown in Fig. 2, if we look at the curve of
I(rational) from the society of the proposed agents, it
peaked around λ = 25 to 30, which is near but below
the system’s limit of task execution. This peak, called
the sweet spot in (Corkill et al., 2015), is caused by the
appropriate organizational structure of the agent soci-
ety. In our case, the proposed agents established their
groups on the basis of dependability through their ex-
perience of cooperation. We want to emphasize that
this curve indicates an important feature of the organi-
zation: namely, that its benefit rises up to the surface
when the efficiency is really required. When the sys-
tem is not busy, any simple method works well, and
when the system is beyond the limit of the theoretical

performance, no method can help the situation. When
the workload is near the system’s limit, the poten-
tial capabilities of agents must be maximally elicited.
The experimental results suggest that the organization
generated by the proposed agents partly elicited their
capabilities in situation where it was really required.

Figures 5 and 7 indicate that agents generate
groups of mostly four or five members on the basis
of their dependability, and actually they form teams
from only within their groups if the number of sub-
tasks is less than or equal to four or five. Even if
they generated larger groups for larger tasks, only
one or two agents were solicited from outside of the
groups. Because these agents were not beneficial
enough for them to stay in the groups of dependabil-
ity, they dropped out of the groups and behaved ra-
tionally. If the solicited agents behaved reciprocally,
the solicitation messages might be ignored, and ratio-
nal agents are thus likely to be solicited. Therefore,
rational agents work like freelancers, compensating
for the lack of member agents in larger tasks. The
role of rational agents from this viewpoint is essen-
tial, especially in busy environments: when the work-
load is high, the rational agents can earn more utili-
ties, thereby increasing the ratio of rational agents as
shown in Fig. 3.

6 CONCLUSION

We proposed agents that switch their behavioral strat-
egy between rationality and reciprocity in accordance
with internal states on the basis of past cooperative
activities and success rates of task executions in or-
der to achieve efficient team formation. Through their
cooperative activities, agents with reciprocal behav-
ior established groups of dependable agents, thus im-
proving the efficiency of team formation by avoid-
ing conflicts, especially in large and busy environ-
ments. We experimentally investigated the perfor-
mance of the society of the proposed agents, the struc-
tures of selected roles and behavioral strategies, and
the agent network through actual cooperation in the
same teams.

Our future work is to more deeply investigate the
bottom-up organization by the proposed agents. For
example, we have to examine how the entire perfor-
mance is affected by the ratios of reciprocity to ratio-
nality. We also need to clarify the protocols to explic-
itly form an association based on mutual dependabil-
ity.
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