
Comparative Analysis of Workbenches to Support DSMLs: 
Discussion with Non-Trivial Model-Driven Development Needs 

André Ribeiro1, Luís de Sousa2 and Alberto Rodrigues da Silva1 
1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal 

2Luxembourg Institute of Science and Technology, Belvaux, Luxembourg 
 

Keywords: Domain Specific Language, Model-Driven Development, Modeling Tool. 

Abstract: The development and use of Domain Specific Languages emerged as a way to cope with complex problems 
using concepts closer to the problem domain. By leveraging the principles proposed by Model-Driven 
Development (MDD), like the separation of concerns and the use of model transformations, this approach 
became popular and caused the emergence of a variety of languages, known as Domain Specific Modeling 
Languages (DSMLs). Moreover, the use of DSMLs with graphical notations abstracts even more the 
problem domain, either by using extensions of UML or directly using metamodeling languages. The 
definition and use of DSMLs is only possible through specific tools, known as languages workbenches. This 
paper discusses the analysis and comparison of three of these tools (namely Papyrus, Enterprise Architect 
and Sirius) that were used to create the XIS-Mobile language, a non-trivial DSML defined as a UML profile 
for modeling mobile applications in a platform-independent way. These tools were evaluated considering a 
set of key criteria (namely learnability, usability, graphical completeness, validation support, transformation 
support, evolvability and interoperability) which show their suitability to develop non-trivial languages. 

1 INTRODUCTION 

The complexity of software systems has increased 
over the years, especially due to the growing 
difficulty and specificity of the problems they aim to 
solve. In order to deal with this issue, several 
Software Engineering approaches have emerged. 
Essentially, these approaches seek to raise the level 
of abstraction at which software systems are 
developed (Bourguignon, 1990). One of the most 
popular is the Model-Driven Development (MDD or 
Model-Driven Engineering) where domain models 
are able to express concepts specific to a certain 
domain problem, unlike the third generation 
programming languages. MDD advocates the use of 
domain models has first-class citizen entities guiding 
the development process through techniques like 
metamodeling, model transformations and code 
generation. MDD also allows that other artifacts 
such as source code or documentation could be 
generated automatically from models (Schmidt, 
2006; da Silva, 2015). 

Domain models are often expressed using 
Domain Specific Languages (DSLs). A DSL is a 
language tailored for a specific set of tasks which, 

through appropriate notations and abstractions, 
either textual or graphical, depicts concepts of a 
particular problem domain (van Deursen, et al., 
2000). Particularly, Domain Specific Modeling 
Languages (DSMLs) abstract even more the 
problem domain since their concepts are commonly 
represented using a graphical notation. Since there is 
not an established convention, whenever we mention 
DSML, we mean a “DSL with a graphical notation”. 

Over the last decades some tools were created to 
support both MDD principles and DSLs. The earlier 
ones put forth in the 1980s and 1990s, were the 
Computer-Aided Software Engineering (CASE) 
tools. CASE tools focused on providing developers 
with the tools and methods to express software 
systems through general-purpose language 
representations. Despite the attention they attracted, 
CASE tools failed to be widely adopted and had 
little impact on commercial software development 
chiefly due to: (1) the poorly mapping of general-
purpose language representations onto the 
underlying platforms, which caused the generation 
of large amounts of code, harder to understand and 
maintain; and (2) the inability to scale up to handle 
complex systems, since the tools did not support 

Ribeiro, A., Sousa, L. and Silva, A.
Comparative Analysis of Workbenches to Support DSMLs: Discussion with Non-Trivial Model-Driven Development Needs.
DOI: 10.5220/0005745603230330
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 323-330
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

323



concurrent engineering, lacked integration of the 
generated code with other platforms and their 
graphical representations were too generic and non-
customizable to be applied on several domains 
(Schmidt, 2006). Thereafter, both the evolution of 
programming languages and the lessons learned 
from CASE tools caused the emergence of 
increasingly better MDD and DSL supporting tools. 
More recently, language workbenches are popular 
solutions to develop DSLs and to overcome the 
inflexibility of the CASE tools. A language 
workbench is essentially a tool that supports the 
definition, reuse and composition of DSLs, as well 
as the creation of customized Integrated 
Development Environments (IDEs) (Fowler, 2005). 
In essence, a language workbench allows not only 
the creation of DSLs, but also the creation of custom 
IDEs for their usage. For that reason, language 
workbenches are also known as meta-CASE tools 
(Costagliola, et al., 2006). 

During the last years our research group has 
conducted several works in the area of MDD, 
namely developing DSMLs defined as UML 
profiles, such as (de Sousa Saraiva & da Silva, 2009) 
(Ribeiro & da Silva, 2014) (de Sousa & Silva, 2015) 
(Filipe, et al., 2016). In this paper we provide an 
analysis and discussion of this kind of tools based on 
our most recent experiences. More specifically, we 
focus on analyzing workbenches when the goal is to 
define and use a complex UML profile to implement 
a MDD process. We consider as a complex UML 
profile, a non-trivial language that contains several 
concepts and representations (diagrams or views). 
For that purpose, we have defined an evaluation 
framework composed of six criteria to describe and 
analyze the main features of three representative 
language workbenches (Papyrus, Enterprise 
Architect and Sirius) using the XIS-Mobile language 
as case study. The XIS-Mobile language (Ribeiro & 
da Silva, 2014) is a UML profile that allows the 
specification of mobile applications in a platform-
independent way and is composed of several 
concepts organized in six views. The main features, 
limitations and difficulties of implementing a 
complex DSML, like XIS-Mobile, and its supporting 
tools are discussed, what provides a relevant 
contribution to users who also need to implement 
such DSMLs. 

The outline of this paper is structured as follows. 
Section 2 presents DSL workbenches not directly 
considered in this paper. Section 3 defines the 
analysis context by describing the XIS-Mobile 
language used as case study and the evaluation 
criteria. Section 4 presents the main features of the 

analyzed tools. Section 5 presents and discusses the 
results of this comparative study. Section 6 discusses 
the related work. Finally, Section 7 concludes the 
paper summarizing its key points and referring 
future work. 

2 LANGUAGE WORKBENCHES 

As mentioned above, a language workbench (or 
meta-CASE tool (Costagliola, et al., 2006)) is a 
software tool that supports the definition, reuse and 
composition of DSLs with the corresponding 
creation of customized IDEs, providing features 
such as model edition, validation and different types 
of model transformations. This paper focuses on the 
analysis of only three language workbenches, mainly 
due to reasons of space restrictions and for better 
explanation. However, if we wanted to broad the 
scope (e.g. consider not only UML profiles), other 
popular tools could be mentioned, namely MPS, 
Xtext, Spoofax, MetaEdit+ or Microsoft DSL Tools. 

The Meta Programming System (MPS) 
(http://www.jetbrains.com/mps) is an open source 
language workbench developed by JetBrains for the 
creation of textual DSLs. MPS provides a 
projectional editor that supports syntactic forms for 
text, tables or mathematical symbols, allowing the 
definition of the language, its editor and code 
generators. The languages produced with MPS can 
be standalone languages, extensions or compositions 
of other languages. 

Xtext (https://www.eclipse.org/Xtext) is a 
framework for developing textual DSLs, provided as 
an Eclipse plug-in. Xtext allows the definition of a 
DSL using an EBNF grammar language and from it 
generates a parser, an AST metamodel in EMF and a 
full-featured Eclipse text editor plug-in. Xtext also 
integrates with other tools from the Eclipse 
Modeling Project. 

Spoofax (http://metaborg.org/spoofax) is a 
workbench for the development of textual DSLs 
with full-featured Eclipse editor plug-ins. Spoofax 
uses several meta-DSLs: (1) SDF grammar is used 
to define the syntax of the DSL and from it basic 
editor services (e.g. syntax highlighting) are 
automatically created; (2) NaBL for name binding, 
helping in services like code completion or reference 
resolving; and (3) Stratego for transformations like 
refactoring services (e.g. rename) and code 
generation. From these specifications, Spoofax 
generates an Eclipse-based editor to use the defined 
DSL. 

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

324



MetaEdit+ (http://www.metacase.com/mep) is a 
proprietary language workbench developed by 
MetaCase for creating DSMLs. MetaEdit+ allows 
defining the language concepts and rules graphically 
or using forms. Then, it is possible to draw the DSL 
graphical representation using the Symbol Editor. 
After that, the MetaEdit+ Code Generator is able to 
generate any kind of code by using code templates 
defined in its own generator definition language. 

Microsoft DSL Tools (http://goo.gl/ArYdjC) 
allow the design of DSMLs that are hosted in the 
Visual Studio environment. DSL Tools provide: (1) 
a graphical designer for the creation and edition of 
DSL definition and its toolboxes; (2) a validation 
engine to assure that the DSL is well-formed and to 
display errors/warnings in case of problems; and (3) 
a code generator that receives the DSL model as 
input and outputs source code, using T4 Text 
templates. After the definition of the DSL, the DSL 
project can be built and run in a custom Visual 
Studio instance. 

3 ANALYSIS CONTEXT 

Before presenting the analysis and comparison of the 
selected tools, it is important to describe the DSML 
used as case study, XIS-Mobile, and the criteria 
considered to evaluate those tools, as well as justify 
their choice. The driver of this study was the need 
for testing the definition of the XIS-Mobile language 
and creating a custom tool that supports its use, and 
also to investigate the existing tools that could 
support such a language. Unlike the surveys 
presented in section 6 (Related Work), which used 
small and somehow trivial case studies, the use of a 
language with so many concepts and views as XIS-
Mobile proved interesting to highlight other 
problems and needs. 

3.1 XIS-Mobile Language 

The XIS-Mobile language (Ribeiro & da Silva, 
2014) is a DSML defined as a UML profile, 
conceived for designing mobile applications in a 
platform-independent way and using domain 
specific concepts. This way both complexity and 
platform fragmentation problems can be mitigated, 
resulting in increased productivity. XIS-Mobile uses 
a multi-view organization composed of six views: 
Domain, BusinessEntities, UseCases, Architectural, 
InteractionSpace and NavigationSpace. 
Additionally, XIS-Mobile specifies roughly forty-six 
types of elements and sixteen types of relationships. 

This variety of views and concepts with different 
meanings make XIS-Mobile a complex and non-
trivial language. 

The Domain view describes the domain entities 
relevant to the problem domain, their attributes and 
the relationships among them. The BusinessEntities 
view represents higher-level entities, called business 
entities, which provide context to a certain use case 
and interaction space. The UseCases view details the 
operations a user can perform in the context of a 
business entity and/or an external service. The 
Architectural view depicts the interactions between 
the mobile application and other external entities 
(e.g. internal providers or servers), it may also be 
considered as a “distributed systems view”. The 
InteractionSpace view is perhaps the most complex 
view of XIS-Mobile due to the amount of 
abstractions it contains. This view describes each 
application's screen, known as interaction space, 
namely the UI layout, the events a certain UI 
component can trigger and the gestures that can be 
performed. The NavigationSpace View describes the 
navigation flow between the various interaction 
spaces of the application. 

3.2 Evaluation Criteria 

This study considers six evaluation criteria used to 
assess each one of the analyzed tools. These criteria 
have been derived from our own experience and 
previous work in this area, as well as from the 
analysis of related work like (Amyot, et al., 2006) 
(Saraiva & da Silva, 2008) (Vasudevan & Tratt, 
2011) that is discussed in detail in section 6. Thus, 
we considered the following major criteria: 
 Learnability – Time and effort required to 

learn and produce the DSL workbench; 
 Usability – Ease of creation and manipulation 

of the DSL elements and companion 
workbench; 

 Graphical Completeness – Ability to depict all 
the DSL elements representation; 

 Validation Support – Ability to validate the 
models produced; 

 Transformation Support – Ability to support 
Model-to-Model (M2M) and/or Model-to-Text 
(M2T) transformations; 

 Evolvability – Ability to continuously support 
former models when the languages (and their 
metamodels) evolve; 

 Interoperability – Ability to export/import the 
models using a standard format, such as XMI. 

Comparative Analysis of Workbenches to Support DSMLs: Discussion with Non-Trivial Model-Driven Development Needs

325



4 ANALYZED TOOLS 

Throughout this paper there were chosen three 
modeling tools available online. We chose only 
three tools for reasons of space restrictions and 
simplicity. These tools were selected according to 
the following requirements: (1) the tool should 
support the creation of graphical DSLs based on 
UML profiles, since XIS-Mobile is a UML profile; 
(2) the tool should have good and up-to-date 
documentation; (3) the tool should be popular and 
recent, or at least should have an active user 
community; and (4) the tool should be free or 
available under an academic license. Therefore, the 
choice was on Papyrus, Enterprise Architect and 
Sirius that will be briefly described. It is important 
to note that other tools could have been chosen 
instead (e.g. Obeo’s UML Designer, Visual 
Paradigm or Rational Software Architect), or even 
some of those mentioned in Section 2 if we would 
consider a broader scope. 

4.1 Papyrus 

Papyrus is an Eclipse plug-in belonging to the 
Model Development Tools (MDT) sub-project 
which provides an integrated environment for the 
edition of any kind of Eclipse Modeling Framework 
(EMF) based model, including UML and related 
languages like SysML and MARTE. 

 

Figure 1: XIS-Mobile metamodel definition using 
Papyrus. 

Papyrus is fully compliant with the OMG 
specification for UML2 and provides graphical 
editors for all of its diagrams. Namely, Papyrus 
offers advanced support for UML profiles allowing 
users to define custom UML-based DSLs and their 
editors with custom palettes. Papyrus also allows the 

integration of these DSL editors with other Eclipse 
MDD tools that provide, for instance, model 
validation (e.g. OCL or EVL), model transformation 
(e.g. ATL or QVT) and code generation (e.g. 
Acceleo or JET). The definition of models is mainly 
performed using a graphical editor, but it is also 
possible using a tree style hierarchy view. 

Once completed, all the information that builds 
up the language workbench can be deployed as a 
regular Eclipse IDE plug-in. Papyrus is documented 
with tutorials, examples, videos, wiki and has a 
dedicated forum. Papyrus is freely available under 
the Eclipse Public License (EPL). Figure 1 shows 
the creation of the XIS-Mobile metamodel using 
Papyrus. 

4.2 Enterprise Architect 

Enterprise Architect (EA) is a visual modeling tool, 
developed by Sparx Systems, for the design of 
software systems, for business process modeling and 
for more generalized modeling purposes. EA is 
based on the OMG’s UML 2.5 specification 
supporting the creation of all UML diagrams, 
elements and connectors. Therefore, EA supports 
very well the definition of new DSMLs based on 
UML profiles. This support is powered by the EA’s 
Model Driven Generation (MDG) Technologies that 
not only allow specifying the UML profile, but also 
allow extending EA with custom toolboxes, 
diagrams, project templates and patterns, among 
other features. 

EA allows releasing all of these components 
customized to a certain DSML as an add-in 
extending EA’s functionality. EA’s add-ins can be 
written in C#, Visual Basic or Java and also provide 
access to EA's Automation and Validation 
Interfaces. The Automation Interface allows 
accessing and manipulating the models, as well as 
extending EA’s User Interface. For instance, the 
Automation Interface can be a useful resource when 
the user needs to create new models automatically. 

In turn, the Model Validation Interface allows 
the definition of model rules or constraints to be 
performed on the model. These rules can have a 
severity level (Warning or Error) and a custom 
message associated, and whenever a rule message is 
clicked the user will navigate to the element that 
produced the infringement. 

EA provides documentation with a user guide, 
demonstration videos, tutorials and a user forum. EA 
is a proprietary tool, but has a 30-day trial version. 
After that, a license is needed with prices depending 
on the EA version and the type of user. For example, 

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

326



a license for the Desktop Edition of EA for an 
individual user is US$135. Figure 2 depicts the 
creation of the XIS-Mobile metamodel using EA. 

4.3 Sirius 

Sirius is an Eclipse plug-in that allows creating 
custom graphical modeling workbenches by 
leveraging the Eclipse Modeling technologies, 
namely EMF and GMF. It has been created by Obeo 
and Thales to provide a generic workbench for 
model-based architecture engineering that can be 
easily customized to fit specific needs on specific 
domains. 

Sirius allows the specification of a modeling 
workbench using graphical, table and tree editors 
which enable users to create, edit and visualize their 
EMF-based models. Editors are defined by a model 
called Viewpoint Specification Model (VSM), 
which defines the complete structure of the 
modeling workbench, its behavior and the edition 
and navigation tools. This model is dynamically 
interpreted by a runtime within Eclipse and therefore 
allows users to test the associated modeling 
workbench instantly. Once completed, the modeling 
workbench can be deployed as a regular Eclipse IDE 
plug-in. 

Similarly to other Eclipse components, Sirius is 
documented with tutorials, examples, wiki, videos 
and has a dedicated user forum. Additionally, Sirius 
is available for free under the EPL. Figure 3 
illustrates the VSM for XIS-Mobile in Sirius. 

 

Figure 2: XIS-Mobile metamodel definition using EA. 

5 ANALYSIS AND COMPARISON 

This section presents the comparative analysis of the 

 

Figure 3: Viewpoint Specification Model for XIS-Mobile 
in Sirius. 

three DSL tools based on the criteria defined in 
section 3. Table 1 summarizes the results obtained. 

Learnability – Papyrus proved to be the tool that 
required less effort to create the XIS-Mobile 
language and its supporting workbench. This can be 
explained by the fact that Papyrus only allows by 
itself the definition of the profile, using a regular 
UML Profile diagram, and the creation of custom 
palettes for each XIS-Mobile’s diagrams by clicking 
on the palette toolbar. The user can then load the 
profile and the palettes manually, or can instead 
create an Eclipse plug-in project and configure the 
plug-in manifest defining configurations like the 
location of the model and its extension points. In EA 
the definition of the XIS-Mobile language is also 
achieved using a profile diagram. Unlike Papyrus, 
EA allows much more customization, namely it 
allows defining custom toolboxes, diagrams, project 
templates and patterns. For instance, the creation of 
custom toolboxes and diagrams is also performed 
using profile diagrams which contain special 
metaclasses like ToolboxPage or Diagram_Logical. 
In order to load all this information, the user needs 
to create a MDG technology file. This file can then 
be loaded by the user (manually) or using a plug-in 
(automatically). The latter option requires an extra 
effort on programming the load of the developed 
MDG technology. Lastly, Sirius is the tool that 
requires more effort, mainly because it defines the 
workbench details in a tree style view containing 
several layers of configurations. Unlike the previous 
two tools, Sirius does not provide its own editor or 
modeler to create and edit the DSL metamodel. This 
can be overcome using an Eclipse plug-in for that 
purpose, being even Papyrus one of the possibilities. 
Additionally, since Sirius provides the creation of 
fully customized workbenches, it also requires a 

Comparative Analysis of Workbenches to Support DSMLs: Discussion with Non-Trivial Model-Driven Development Needs

327



significant amount of configuration even for a small 
example. In the case of the XIS-Mobile, this issue 
becomes even more critical by the fact that it is a 
UML profile, requiring the querying and stereotype 
filtering used in particular contexts. A very positive 
point when compared to the other tools is that Sirius 
allows the test of the developed workbench on-the-
fly. 

Usability – In terms of usability, EA proved to 
be the most mature and more efficient tool, not only 
due to the amount of options it provides, but also to 
the lack of bugs it contains. Papyrus revealed itself 
somewhat unstable with some crashes and bugs (e.g. 
impossibility to delete and associate elements on 
occasions) caused by the fact of being a work in 
process project. Moreover, Papyrus proved unable to 
correctly apply icons or shapes to language 
elements, thus failing to improve the graphical 
semantics of the produced models. This aspect is 
clearly a disadvantage when compared to EA and 
other UML-based workbenches. Sirius has better 
usability than Papyrus and is more stable, but its 
approach of developing and configuring many 
aspects of the DSML in a tree style view  can be  
cumbersome, especially the Viewpoint Specification 
Model that requires the use of several 
configurations. 

Graphical Completeness – EA and Sirius were 
the tools that allowed to fully reproduce all the XIS-
Mobile elements with fidelity. In contrast, Papyrus 
revealed several important limitations and bugs in 
the creation of the InteractionSpace view diagrams. 
More precisely, Papyrus did not permit to freely 
position widgets inside interaction spaces preventing 
the correct modeling of GUI layouts. 

Validation Support – EA is the tool that offers 
by itself the most complete validation support. The 
offered UML profile mechanism restricts each 
stereotype according to its metaclass, be it XIS-
Mobile stereotypes, toolboxes or diagrams. 
Moreover, EA allows to programmatically define 
model constraints that will be performed over the 
model. Both Papyrus and Sirius are only able to 
perform by themselves limited validations in the 
types of each DSL element by leveraging the UML 
profile mechanism. All the remaining verifications 
and the eventual triggering of error messages are 
only possible recurring to other Eclipse plug-ins 
dedicated to that purpose (e.g. EVL). 

Transformation Support – Similarly to what 
happens in the previous criteria, only EA supports 
by itself M2M and M2T. Both can be specified 
using templates written in a proprietary DSL. The 
M2T transformations can only transform one 

element into another despite the hypothetical need to 
generate various elements from one. To overcome 
this issue, EA also allows the manipulation of 
models programmatically. Both Papyrus and Sirius 
only support model transformations when used in 
conjunction with other Eclipse plug-ins (e.g. 
Acceleo, JET or ATL). 

Evolvability – Language evolution is somehow 
equivalent in all three tools. Papyrus, EA and Sirius 
need to be restarted whenever the user wishes to see 
the changes performed in the DSL metamodel. 
Papyrus can eventually update automatically old 
models, if the metamodel has been loaded manually. 
Sirius just provided a consistent behavior when it 
runs on-the-fly changes related with the DSL 
workbench. EA needs to be reloaded in either of 
these cases. 

Interoperability – Both Papyrus and Sirius are 
able to import and export the produced models in 
EMF-compatible formats, including Ecore and XMI. 
EA also supports the import and export in Ecore and 
XMI (but with proprietary namespaces). 

Summarizing, EA proved to be the most suitable 
tool to support the definition of a complex DSML 
such as XIS-Mobile language. EA offers a very good 
support for UML profiles not just in terms of 
usability, but also in terms of possibilities of 
customization (e.g. toolboxes, diagrams, project 
templates). Also the provision of integrated 
mechanisms to perform M2M and M2T mechanisms 
is quite important in every MDD framework project. 
Therefore, EA revealed as one of the best tools 
currently available for the development of a DSML 
based on a UML profile. However, a downside is 
that it is a proprietary tool. If a user intends to create 
a standalone DSML without leveraging any UML 
facility, EA may not be the most appropriate tool, 
since it was mainly tailored for UML-based 
modeling. We can conclude that EA is a clear 
example of a CASE tool that evolved to a language 
workbench by providing a set of customizations to 
support the creation of user-specified DSLs. 
Similarly to EA, Papyrus is strongly bound to UML 
modeling and provides good support for UML 
profiles. However, Papyrus revealed serious 
usability limitations and as so, currently is not a 
solution to model and maintain the XIS-Mobile 
language (neither DSMLs with a large amount of 
concepts). It can be useful to create small languages 
based on UML and the fact of being available for 
free is an important advantage. From the three tools 
analyzed, Sirius is the one that offers a larger degree 
of freedom by allowing the creation of workbenches 
for any EMF-based language (both textual and 

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

328



graphical) representing the concepts of that language 
using diagrams, tables or trees. These facts make 
Sirius rather different from EA and Papyrus 
especially because it is not specifically tailored for 
UML neither provides a modeler to define the DSL 
metamodel. The use of XIS-Mobile with Sirius 
proved to be a painstaking task because, as pointed 
previously, Sirius required to be configured for 
taking into account the desired UML elements and 
stereotypes. Due to its nature, Sirius appears to be 
more adequate for standalone DSLs that do not use 
UML as its base metamodeling approach, because it 
is not immediately ready to support UML. 
Performing that configuration for languages like 
XIS-Mobile can be an overkill. 

Table 1: Evaluation Results. 

Tool 
Criteria 

Papyrus EA Sirius 

Learnability Low Medium High 
Usability Medium High Medium 
Graphical 
Completeness 

Medium High High 

Validation 
Support 

Low High Low 

Transformation 
Support 

Low Medium Low 

Evolvability Medium Medium Medium 
Interoperability Medium Medium Medium 

6 RELATED WORK 

Previous work reports the analysis and comparison 
of language workbenches with different concerns 
and with different purposes. In general this previous 
work reports experiences using small and somehow 
simpler DSMLs or textual DSLs. 

(Amyot, et al., 2006) present a study that 
evaluates five DSML tools (GME, Tau G2, RSA, 
XMF-Mosaic and Eclipse with GEF and EMF) by 
using the Goal-Oriented Requirement Language 
(GRL) as use case. Like XIS-Mobile language, GRL 
has a graphical representation and can be used either 
as a UML profile or as an independent language. 
However, XIS-Mobile has a wider set of concepts 
and relationships than GRL, being therefore more 
complex, which can be an important factor when 
choosing the tools to use. Moreover, some of the 
tools analyzed are proprietary and/or obsolete (e.g. 
Tau G2, RSA, XMF-Mosaic). Some evaluation 
criteria used in (Amyot, et al., 2006), such as 
Graphical Completeness and Editor Usability, were 

also used in this paper, since they were considered 
useful to evaluate DSL tools. 

Similarly to what is done in this paper, (Saraiva 
& da Silva, 2008) evaluate a small set of tools that 
allow the creation of DSMLs and discusses some 
open research issues in this area. An evaluation 
framework is proposed with some dimensions 
focused either on architectural details (e.g. level 
compaction) and practical usage of the tools (e.g. 
model transformation support). The evaluation 
framework is applied using a small case study, the 
Social Network metamodel, while in this paper a 
more complex metamodel is used for the purpose. 

Unlike this paper, (Vasudevan & Tratt, 2011) 
focus on textual DSL tools; for that reason, the 
representation of the DSLs produced with these tools 
is similar to a programming language. Moreover, the 
case study used to evaluate the tools is a finite state 
machine, which is considerably less complex than 
XIS-Mobile. The evaluation is performed using a set 
of “dimensions” (e.g. approach or error reporting) 
for qualitative evaluation and “metrics” (e.g. lines of 
code or aspects to learn) for quantitative evaluation. 
While some of these dimensions and metrics are 
captured by the criteria use in this paper, others like 
the number of lines of code only make sense for 
textual DSL tools evaluation. 

The annual Language Workbench Challenge 
(LWC), launched in 2011, is another initiative that 
promotes the comparison and discussion of DSL 
workbenches. (Erdweg, et al., 2013) present and 
discuss ten language workbenches that participated 
in LWC’13. Unlike this paper, the set of tools 
analyzed was defined according to the tools that 
applied to solve an assignment and were 
subsequently accepted. The assignment was to 
implement a DSL for questionnaires, which should 
be rendered as an interactive GUI reactive to user 
input to present additional questions. Additionally, 
the produced DSLs did not have the restriction of 
being graphical, unlike in this paper. The evaluation 
of the tools was more exhaustive than the one 
presented here, since it was used a feature model 
that contemplates features of both textual and 
graphical DSL tools. 

(Savić, et al., 2014) report their experience using 
MPS to implement a textual language, called 
SilabReq, for requirements specification and 
compare MPS with other alternative tools (Spoofax, 
Obeo Designer, MetaEdit+, Xtext, Papyrus and 
EMFText) in what respect the following criteria: 
support for the abstract and concrete syntax 
definition, and supported IDEs. However this paper 
analyzes more tools, it provides a shallow analysis 

Comparative Analysis of Workbenches to Support DSMLs: Discussion with Non-Trivial Model-Driven Development Needs

329



on those tools and is only concerned in a textual 
DSL. 

Recently, (Morais & da Silva, 2015) proposed 
and used the ARENA framework to compare and 
evaluate user-interface modeling languages. 

7 CONCLUSIONS 

This paper presented an analysis and comparison of 
three DSL workbenches (Papyrus, EA and Sirius), 
which were evaluated in the context of a complex 
DSML, the XIS-Mobile language. Tools like the 
ones surveyed are becoming popular by 
incorporating the MDD principles and supporting 
the definition of DSLs, as well as the creation of 
their customized IDEs. These workbenches allow 
raising the level of abstraction not only by using 
concepts specific to a certain domain, but also 
through the use of model transformations that aim to 
increase the speed of the development process and 
time-to-market of software applications. 

An evaluation framework was defined in order to 
better analyze these workbenches. This framework 
included the following criteria: learnability, 
usability, graphical completeness, validation 
support, transformation support, evolvability and 
interoperability. After using each one of the tools 
and analyzing them against these criteria, it was 
possible to identify their strengths and weaknesses, 
as well as assess their suitability to develop non-
trivial languages. Additionally, this paper discussed 
related work allowing us to further research the 
complexity of these tools. This evaluation 
framework provides a qualitative evaluation, which 
can be somewhat subjective. In the future, this 
framework may be extended possibly including 
other criteria reflecting measurable aspects of 
language workbenches. Also its application to a 
wider set of workbenches can better aid identifying 
other important features in such tools. 

ACKNOWLEDGEMENTS 

This work was partially supported by national funds 
through FCT – Fundação para a Ciência e a 
Tecnologia, under the projects 
POSC/EIA/57642/2004, CMUP-
EPB/TIC/0053/2013, UID/CEC/50021/2013 and 
DataStorm Research Line of Excellency funding 
(EXCL/EEI-ESS/0257/2012). 

REFERENCES 

Amyot, D., Farah, H. & Roy, J.-F., 2006. Evaluation of 
development tools for Domain-Specific modelling 
languages. System Analysis and Modelling: Language 
Profiles, 4320(12). 

Bourguignon, J.-P., 1990. Structuring for managing 
complexity. Managing Complexity in Software 
Engineering, 17. 

Costagliola, G., Deufemia, V., Ferrucci, F. & Gravino, C., 
2006. Constructing Meta-CASE Workbenches by 
Exploiting Visual Language Generators. IEEE 
Transactions on Software Engineering, 32(3). 

Da Silva, A. R., 2015. Model-Driven Engineering: A 
Survey Supported by a Unified Conceptual Model. 
Computer Languages, Systems & Structures, 43. 

De Sousa Saraiva, J. & da Silva, A.R., 2009. CMS-based 
Web-Application Development Using Model-Driven 
Languages. Proc. of ICSEA, IEEE. 

De Sousa, L. M. & da Silva, A. R., 2015. A Domain 
Specific Language for Spatial Simulation Scenarios. 
GeoInformatica. 

Erdweg, S. et al., 2013. The State of the Art in Language 
Workbenches. Software Language Engineering, 8225. 

Filipe, P., Ribeiro, A. & da Silva, A. R., 2016. XIS-CMS: 
a MDD Approach for Content Management Systems 
Modules Applications. MODELSWARD. 

Fowler, M., 2005. Language Workbenches: The Killer-
App for Domain Specific Languages? http://www. 
martinfowler.com/articles/languageWorkbench.html. 

Morais, F. & da Silva, A. R., 2015. Assessing the Quality 
of User-Interface Modeling Languages. Proc. of 
ICEIS, SCITEPRESS. 

Ribeiro, A. & da Silva, A., 2014. XIS-Mobile: A DSL for 
Mobile Applications. Proc. of SAC, ACM. 

Saraiva, J. D. S. & da Silva, A. R., 2008. Evaluation of 
MDE Tools from a Metamodeling Perspective. 
Journal of Database Management, 19(4). 

Savić, D. et al., 2014. Preliminary Experience Using 
JetBrains MPS to Implement a Requirements 
Specification Language, Proc. of QUATIC, IEEE. 

Schmidt, D., 2006. Guest Editor's Introduction: Model-
Driven Engineering. IEEE Computer, 39(2). 

van Deursen, A., Klint, P. & Visser, J., 2000. Domain-
Specific Languages: An Annotated Bibliography. 
SIGPLAN, 35(6). 

Vasudevan, N. & Tratt, L., 2011. Comparative Study of 
DSL Tools. Electronic Notes in Theoretical Computer 
Science, 264(5). 

 

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

330


