
Performance Analysis of Real Time Implementations of Voice
Encryption Algorithms using Blackfin Processors

Cristina-Loredana Duta, Laura Gheorghe and Nicolae Tapus
Department of Computer Science and Engineering, University Politehnica of Bucharest, Bucharest, Romania

Keywords: Speech Processing, Voice Encryption, Digital Signal Processor, Grain V1, Trivium, Mickey 2.0, Blackfin
Processor.

Abstract: A large part of the latest research in speech coding and speech encryption algorithms is motivated by the
need of obtaining secure military communications, to allow effective operation in a hostile environment.
Since the bandwidth of the communication channel is a sensitive problem in military applications, low bit-
rate speech compression methods and high throughput encryption algorithms are mostly used. Several
speech encryption methods are characterized by very strict requirements in power consumption, size, and
voltage supply. These requirements are difficult to fulfill, given the complexity and number of functions to
be implemented, together with the real time requirement and large dynamic range of the input signals. To
meet these constraints, careful optimization should be done at all levels, ranging from algorithmic level,
through system and circuit architecture, to layout and design of the cell library. The key points of this
optimization are among others, the choice of the algorithms, the modification of the algorithms to reduce
computational complexity, the choice of a fixed-point arithmetic unit, the minimization of the number of
bits required at every node of the algorithm, and a careful match between algorithms and architecture. This
paper describes the performance analysis on Digital Signal Processor (DSP) platform of some of the
recently proposed voice encryption algorithms, as well as the performance of stream ciphers such as Grain
v1, Trivium and Mickey 2.0 (which are suited for real time voice encryption). The algorithms were ported
onto a fixed point DSP, Blackfin 537, and stage by stage optimization was performed to meet the real time
requirements. Memory optimization techniques such as data placement and caching were also used to
reduce the processing time. The goal was to determine which of the evaluated encryption algorithms is best
suited for real time secure communications.

1 INTRODUCTION

Speech represents the fundamental form of
communication between humans. There are two
methods to represent the speech: through its message
content (as information) and as an acoustic
waveform (the signal which carries the message
information).

In the last years, due to the advancements in
communication technology and the increasing
demand of speech based applications, security has
become an important aspect. The purpose of secure
communication is to overcome unwanted disclosure
and unauthorized modifications while transmitting
speech through insecure channels.

The redundancy of the language plays an
important role in secure speech communication
systems such that if the language is highly

redundant, an intruder can decipher much easier the
information. Traditional solutions to ensure
communications confidentiality were based on
scrambling techniques (which include simple
permutations and affine transformations in
frequency or time domain). Due to the fact that in
the last decade, the computing power has quickly
increased, these scrambling algorithms became
vulnerable to attacks. In this context, many real-
world cryptographic implementations shifted to
integrating encryption with compression algorithms
in order to reduce the size of the signal before
encryption and to eliminate the redundancy.

In general, there are four main categories of
speech encryption: frequency domain scrambling,
time domain scrambling, amplitude scrambling and
two-dimensional scrambling (combination of time-
domain and frequency-domain scrambling). In the

Duta, C-L., Gheorghe, L. and Tapus, N.
Performance Analysis of Real Time Implementations of Voice Encryption Algorithms using Blackfin Processors.
DOI: 10.5220/0005744601570166
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 157-166
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

157

transform domain, there are many speech encryption
methods. For instance, methods such as fast Fourier
transform, discrete cosine transform and wavelet
transform are widely used. Recently, some new
voice encryption methods were developed based on
chaotic maps and on circular transformations.

Speech encryption algorithms can also be
classified into digital encryption and analogue
encryption methods. Analogue encryption operates
on the voice samples themselves. The main
advantage of analogue encryption is the fact that no
modem or voice compression method is required for
transmission. Moreover, the quality of the voice
which is recovered is independent of the language.
This type of encryption is recommended to be used
for the existing analog channels such as telephone,
satellite or mobile communication links.

Digital encryption performs as a first step the
digitization of the input voice signal. Then, the
digitized signal will be compressed to produce a bit
stream at suitable bit rate. The resulting bit stream
will be encrypted and transmitted through insecure
channels. This type of encryption ensures high voice
quality, low distortion and is considered
cryptanalytically stronger than analogue encryption.

Complex digital speech encryption algorithms
were developed due to the appearance of Very Large
Scale Integration (VLSI) and DSP chips and are
nowadays used in applications such as voice
activated security, personal communication systems,
secure voice mail and so on. A part of these
applications require devices that have limited
resources, which means that their implementation is
dependent on constraints such as memory, size and
power consumption. In this context, because of the
advantages offered, DPSs represent the best solution
for obtaining high performance speech encryption,
under real time requirements. Moreover, hardware
cryptographic algorithms are more physically
secure, which makes it hard for an attacker to read
information or to modify it.

The purpose of this paper was to optimize and to
compare the performance of six speech encryption
algorithms which can be easily embedded in low
power, portable systems and which can be used in
real time. This paper focuses on the following
speech encryption methods: three stream ciphers
(Mickey 2.0, Grain v1, Trivium), scrambling
encryption algorithm, Robust Secure Coder (RSC)
algorithm, encryption algorithm based on chaotic
map and Blowfish algorithms. An important aspect
presented in this paper is solving the problem of
optimizing the implementations of previously
mentioned voice encryption algorithms on DSP

platforms. All the algorithms were ported onto a
fixed point DSP and a stage by stage optimization
was performed to meet the real time requirements.
The goal was to determine which of the evaluated
encryption algorithms is best suited for real time
secure communications (in terms of performance).

This paper is organized as follows. The
necessary background for our work is presented in
Section 2. Related work is described in Section 3.
Details regarding the architecture and
implementation of voice encryption algorithms are
presented in Section 4. The experimental results for
the un-optimized code and for the optimized code of
the speech encryption algorithms are described in
Section 5. Conclusions are summarized in Section 6
together with our future work.

2 BACKGROUND

This section includes a brief description of Mixed
Excitation Linear Prediction (MELP), a speech
coding algorithm, of stream ciphers such as Mickey
v2, Trivium, Grain v1.0, of recently developed voice
encryption algorithms and the description of general
aspects of DSP architectures.

2.1 MELP Algorithm

Voice coders are widely used in digital
telecommunications systems to reduce the required
transmission bandwidth.

Since the late 1970s, vocoders have been
implemented using linear prediction which is a
technique of representing the spectral envelope, a
method conducting to linear predictive coding (LPC)
(Tremain, 1982). The main disadvantage of LPC
method is the fact that sometimes it sounds buzzy or
mechanical because of the inability to reproduce all
kinds of voiced speech using a simple pulse train.

MELP vocoder (McCree, 1996) and (Supplee,
1997) is based on LPC model, but has some
additional features such as: mixed-excitation, pulse
dispersion, adaptive spectral enhancement and
aperiodic pulses. The mixed-excitation reduces the
buzz which is in general encountered in LPC
vocoders. Aperiodic pulses ensure easy transitions
between unvoiced and voiced segments of the
signal. More exactly, the synthesizer can reproduce,
without having tonal noises inserted, erratic glottal
pulses. The pulse dispersion is, in general,
implemented using a filter, which disperses the
excitation energy with a pitch period. This feature is
important for synthetic speech, because the harsh

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

158

quality of it is reduced. The filter for adaptive
spectral enhancement provides a more natural
quality to the outputted speech signal, by improving
the match between natural and synthetic waveforms.

2.2 Trivium Stream Cipher

Trivium stream cipher (Canniere, 2006) has 80-bit
initialization vector (IV) and a key of 80 bits and can
generate a keystream up to 264 bits. The secret state
of the algorithm has 288 bits which includes three
non-linear feedback shift registers of different
lengths: 93, 84 and 111 bits. As the majority of
stream ciphers, Trivium has two phases: the setup of
key and IV phase and the keystream generation
phase. The keystream generation operates in each
clock cycle on three input bits and produces one
output bit. The initialization includes 1152 steps of
the clocking procedure. The algorithm is designed
such that it allows improvement of the throughput
using parallelization (64 iterations can be computed
at once), without increasing the area necessary for
implementation.

2.3 Mickey 2.0 Stream Cipher

Mickey 2.0(Babbage, 2006) is a synchronous stream
cipher, which stands for “Mutual Irregular Clocking
KEYstream generator”. The cipher works with an IV
with length up to 80 bits and accepts keys of 80 bits
length. Mickey produces the ciphertext by
performing bitwise XOR between the plaintext and
the keystream bits. The keystream sequence can be
of maximum 240 bits. The state of the algorithm
includes two 100-bit shift registers (one nonlinear
and the other linear) which are clocked one by the
other in an irregular mode. The designers have also
created a version of the cipher (MICKEY1-28 2.0)
which accepts an IV up to 128 bits and a 128-bit
key. Regarding the implementation, the authors
mention that they were able to generate, using a PC
with 3.4 GHz Pentium 4 processor, 108 bits in
approximately 3.81 seconds.

2.4 Grain V1 Stream Cipher

Grain stream cipher (Hell, 2007) uses an 80-bit key
and a 64-bit IV. This initial version was revised
because vulnerabilities were discovered in its
structure and a new version Grain v1 was created
which includes two stream ciphers: one for 128-bit
keys (with 80-bit IV) and one for 80-bit keys (with
64-bit IV). These ciphers include a non-linear
feedback register and a linear feedback register

which are coupled using lightweight boolean
functions. Even though, the Grain family ciphers
design includes an ingenious multiplication of
throughput speed, this feature increases the space
consumed.

2.5 Scrambling Speech Encryption
Algorithm

In (Ravikrindi, 2011), the authors use for speech
encryption a scrambling technique. For this, they
have developed a software program in assembly
language programming techniques for Digital Signal
Processor ADSP 2181 (which is a 16 bit fixed point
processor).

The algorithm works as follows. The first step is
to acquire the voice signals, then to digitally code
them and store the values in the memory of the
processor (128 samples are stored). The scrambling
of the speech signal is performed using Fast Fourier
Transform (FFT) and Inverse Fast Fourier
Transform (IFFT) techniques.

The next step is to perform decoding, in order to
obtain the speech signal again, which will be
transmitted to the receiver. After applying FFT, the
signal is converted into spikes (in frequency
domain).

The signal spikes will be stored in the memory
and based on circular buffers, their positions will be
interchanged, ensuring in this manner the scrambling
of the original signal (first 64 samples are displaced
into next 64 samples position and vice versa). After
scrambling, IFFT is applied to convert the signal
from frequency domain, back into the time domain.

The last step is to convert the digital signal into
the analog signal and to transmit it. Figure 1
illustrates the speech encryption process, where
ADC represents the Analog-to-Digital Converter and
DAC represents the Digital-to-Analog Converter.

Figure 1: Speech encryption process (Scrambling).

The receiver performs the same steps previously
described, obtaining at the end of the process the
original speech signal. The original signal is
obtained when the spikes (mentioned in the
encryption process) are placed into their original
positions, process which happens using the circular
buffers. Figure 2 shows the speech decryption

Performance Analysis of Real Time Implementations of Voice Encryption Algorithms using Blackfin Processors

159

process.

Figure 2: Speech decryption process (Descrambling).

2.6 Robust Secure Coder (RSC) Speech
Encryption Algorithm

In (Babu, 2012), the authors present their scheme for
speech encryption, called RSC, which includes
MELP compression algorithm, Triple Data
Encryption Standard (3DES) encryption algorithm
and a Forward Error Correction (FEC) algorithm.
Figure 3 present the speech encryption process. The
original speech is passed through MELP encoder in
frames of 22.5 milliseconds. The frame is coded into
54 bits of compressed speech frame. Because MELP
algorithm ensures FEC for unvoiced mode only, the
designers of RSC use 10 parity bits to ensure error
correction only for voiced mode. The 54 bits of
speech previously compressed and the 10 bits of
FEC are given as input for 3DES encryption process.
The result is 64 bits of encrypted and compressed
speech, which will be transmitted to the receiver.

Figure 3: Speech encryption process (RSC algorithm).

The decryption process is illustrated in Figure 4
and is similar with the encryption process. The 64
bits of encrypted speech are given as input for 3DES
decryption process, resulting 64 bits which will then
enter in the FEC. 10 of 64 bits are used to correct
errors and the rest of 54 bits are separated and given
as input to MELP decoder. The output of the
decoder is a synthesized speech frame of 22.5
milliseconds.

Figure 4: Speech decryption process (RSC algorithm).

2.7 Chaotic Map and Blowfish Speech
Encryption Algorithms

In (Ulkareem, 2012), the authors describe a new

solution to encrypt speech signal which includes
chaotic encryption algorithm based on logistic map
and Blowfish encryption algorithm. The advantage
of using chaotic function is that it increases the
security of the algorithm and the complexity of the
encryption and decryption functions. The solution
proposed by the authors’ works as follows. For the
encryption process, which is described in Figure 5,
as a first step, the raw speech signal is divided into
frames, each frame containing 256 values. Then, the
speech frames chosen for encryption are
decomposed using wavelet packet transform (WPT),
to determine the decomposed frames coefficients of
the level 2. At the end of this process, 256
coefficients are found for each selected frame. The
next step is to use chaotic logistic map to generate a
chaotic key which will be XORed with each frame
value. The Blowfish algorithm provides two parts of
128 chaotic encrypted values which are merged to
obtain an encrypted frame of 256 values.

Figure 5: Speech encryption process (Chaotic map and
Blowfish algorithms).

The decryption process is illustrated in Figure 6.
In the first step, the encrypted speech signal is
divided into frames (each containing 256 values) and
each frame is split into left part (128 values) and
right part (128 values). The two parts are given as
input for Blowfish algorithm and then the decrypted
frames are XORed with the chaotic key. At the end
of the Blowfish decryption process, a frame of 256
values is obtained, which is passed through Inverse
WPT (IWPT) restoring in this way the decrypted
speech signal.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

160

Figure 6: Speech decryption process (Chaotic map and
Blowfish algorithms).

2.8 DSP Architecture

In general, speech coding and speech encryption
algorithms include intensive processing operations
and for this reason it’s recommended to implement
them on dedicated DSP which have instructions to
handle these types of computations.

Several real-time speech encryption applications
are characterized by very tight requirements in size,
voltage supply and power consumption. In order to
fulfill these constraints, thorough optimization
should be performed at all levels, starting from
algorithmic level, then at system and circuit
architecture level, and also at layout and design of
the cell library.

A block diagram of embedded DSP architecture
is shown in Figure 7. This contains the processor
core, the peripherals, the memory and others (Direct
Memory Access controller, event controller etc.).
The DSP core includes Data Address Generator
(DAG), Arithmetic Logic Unit (ALU), register sets
and sequencer.

Figure 7: A diagram of DSP architecture.

The most important aspect regarding the DSP is
to decide between floating point and fixed point
computational core. Very fast implementations can
be obtained by using floating-point processors, but

these are not bit-exact. In this context, the best
option for real time implementations is a specialized,
fixed-point processor and this is what we have used
for the implementations of previously described
speech encryption algorithms.

We have chosen for our project’s implementation
Blackfin ADSP-BF537 (ADSP-BF357, 2013)
processor core architecture, because it combines:
flexible single instruction multiple data capabilities
for parallel computations, an orthogonal RISC-like
microprocessor instruction set, zero-overhead loops,
a dual-MAC (Multiply and Accumulate) signal
processing engine, and multiple timed features into a
single instruction set. Blackfin contains an internal
ADC and is much faster than microcontrollers.
VisualDSP++ software can be used to simulate the
behavior of the DSP chip. Unfortunately, even with
this specialized DSP, optimization techniques are
still necessary in the implementation of stable
speech encryption algorithms with real-time
performances.

3 RELATED WORK

To give a better perspective about the importance
and utility of our project this section describes the
results obtained by other researchers and other
developed speech encryption algorithms.

(Wollinger, 2000) presents the results obtained
after comparing the optimized implementations of
Advanced Encryption Standard (AES) finalists on
DPS. The evaluated algorithms were Mars, RC6,
Rijndael, Serpent and Twofish and the
implementations were done using TMS320C64x
platform. The test scenarios included single-block
mode and multi-block mode (two blocks at a time
were encrypted) and the results were measured in:
the number of cycles (necessary for the encryption
process of each algorithm), the throughput
(Mbit/sec) and memory usage.

In (Good, 2008), the hardware performances of
the eSTREAM competition finalists are presented.
The framework designed by the authors takes into
considerations the following evaluation elements:
compactness, throughput, power consumption,
simplicity and scalability. Their evaluation shows
that the simplest algorithm is Mickey128, the most
flexible one is Trivium and that Grain80 offers the
best results for two samples application of future
wireless network and low-end of radio frequency
identification tags/ wireless sensor network nodes.

In paper (Servetti, 2002), the authors propose a
speech encryption technique which uses low

Performance Analysis of Real Time Implementations of Voice Encryption Algorithms using Blackfin Processors

161

complexity perception based on partial schemes. The
speech signal is compressed using ITU-T G.729
standard (ITU-t, 1996) and the result is divided into
two classes: one is encrypted and the other is
unprotected. Also, there are two level partial
encryption techniques used, one low protection (for
eavesdropping prevention) and one high-protection
(for full encryption of the compressed bit stream).

In (Chen, 2007), a speech encryption method
based on vector quantization (VQ) of LPC
coefficients is presented. The secret key is generated
using the indices of VQ corresponding to the
neighboring frames derived from the natural
speech’s characters. (Girin, 2007) presents an
encryption algorithm based on time-trajectory model
of the sinusoidal components corresponding to
voiced speech signals. This method uses the
amplitude and phase parameters of the discrete
cosine functions which are applied for each voiced
segment of the speech.

A method for speech encryption based on
augmented identity matrix is presented in (Tingting,
2009). Enhanced encryption can be achieved by
analyzing the redundancy parameters of the coded
speech signal, with low computation complexity in
real time applications. In (Merit, 2012), a voice
encryption method called “DES with Random
permutation and Inversion” is described, which
solves the problem of penetrating the RPE-LTP
vocoder by the encrypted voice. The solution
proposed ensures secure communication in Global
System for Mobile Communications (GSM) and a
good compatibility to all GSM networks.

The authors describe in (Kaur, 2012) a new
speech encryption algorithm which integrates a
personalized time domain scrambling scheme and is
based on four level of hash based encryption. They
encrypt the original signal four times using different
algorithms (repositioning of bits, using twice
random number generation and amplitude ascending
ordering) at each level. Based on their experimental
results, it can be seen that the proposed algorithm
ensures a high level of security.

In (Knezevi, 2013) the authors illustrate how
signal processing techniques can be used to design
and implement cryptographic and security
applications. Implementations on DSP processors of
well known hash functions, public-key algorithms
are described in detail. Moreover, using the special
features of DSP processor, they present a key
derivation technique and other methods of pre-
processing data which can be very useful in
performing side-channel attacks.

4 IMPLEMENTATION

In this section we present the details regarding real-
time and offline implementations of six speech
encryption algorithms (described in Section 2).

A point of interest in this area is getting DSP
microprocessors, embedded in a system which
performs speech encryption and decryption.
Implementation in C is structured and easy to follow
and can be an important starting point for
implementing these algorithms on various platforms.

The algorithms were implemented at the
beginning in C language using Microsoft Visual
Studio2012, which makes the software processor
independent and can be linked with any processor if
the corresponding assembler is accessible. After we
thoroughly analyzed their functionality, the code
was transferred to the integrated development
environment, called VisualDSP++, on a DSP
platform. In the first stage, the algorithms were
tested offline, using a single processor so that we
could verify if the implementations remain
functional even when their included in this new
environment.

After we implemented the speech encryption
algorithms on a DSP platform, we optimized the
programs so that it allows real-time communication.
This was done using two fixed point DSPs from
Analog Devices, ADSP-BF537, as it can be seen in
Figure 8. The communication between the DPSs is
done using a serial transmission (through UART)
and MELP algorithm was used to compress the
speech signal. This block diagram is not available
for the implementation of scrambling speech
encryption algorithm (where the digital signal is
given as input for the FFT function without
compressing it) and for encryption algorithm based
on chaotic map and Blowfish cipher (it uses WPT
for compression).

Figure 8: Real-time communication on BF537 block
diagram.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

162

Several optimizations were necessary to meet the
real time requirement of completing all computation
processes within frame duration. The source code of
speech encryption algorithms were thoroughly
optimized at the C Level.

5 OPTIMIZATION AND
EXPERIMENTAL RESULTS

Since most embedded systems are real-time systems,
code optimization in terms of execution speed is an
important performance index which will result in
lower power consumption. It is always easier to use
a C compiler optimization. However, in cases where
we have to save more MIPS or memory processing,
assembly code optimization is the only way to
achieve this level of performance. The development
cost of writing 100% of the entire program in
assembly language, far exceeds the performance
gain.

A better approach is to start writing code in C,
then create a detailed profile to identify time critical
code sections and replace these code segments with
code in assembly language. A common rule 80% -
20% says that 80% of processing time is used for
20% of code. So if we can identify those 20% of the
code and optimize it using assembly language,
significant performance gains can be achieved. A
method for identifying the region of interest is to use
the statistical profiler (for EZ-KIT) or the linear
profiler (for a simulator) that exist in the
VisualDSP++. Running the applications in
VisualDSP++ for the first time, generated the
execution times (in milliseconds) seen in Table 1,
for compressing and encrypting a single frame.

Table 1: Execution time per frame before code
optimization.

Speech Encryption
Algorithm

Compression
Algorithm

Execution
time/frame (in ms)

Trivium MELP 168.312
Mickey v2.0 MELP 160.125

Grain v1 - 80 bit key MELP 166.129
Grain v1 -128 bit key MELP 168.934

Scrambling - 162.331
RSC MELP 172.624

Chaotic map&
Blowfish

WPT 174.753

We started by applying different optimization
techniques at C level (Table 2) then we applied
different hardware optimizations which can be seen
in Table 3. The execution time (given in

milliseconds) decreased significantly for all
encryption algorithms as it can be seen in Table 4.
All performed computational processes lasted more
than 170 ms before code optimization, result which
is inacceptable, given the time available for a frame
(22.5 ms). After the optimization, the execution time
per frame was reduced to less than 21.5 ms for all
implemented algorithms.

Table 2: C level optimizations.

Optimization technique
Enable: optimization for C code, automatic inlining,
interprocedural optimization from VisualDSP++ options
Use pragma for optimizing loops
Use pragma for data alignment
Use pragma for different memory banks
Use pragma for no alias
Use volatile and static data types
Use arithmetic data types (int, short, char, unsigned int,
unsigned char, unsigned short)
Using runtime C/C++ and DSP libraries
Use pragma to optimize for speed
 Using intrinsic functions and inline assembly
 Profile Guided Optimization (PGO) - the compiler uses
the data collected during program execution for an
optimization analysis. PGO informs the compiler about
the functions that affect branch prediction, improve loops
transformation and reduce code size.

Table 3: Hardware level optimizations.

Optimization technique
Special addressing modes – using different data sections
(for add() function)
Using assembly code
Using hardware loops
Using parallel instructions
Using software pipeline

Table 4: Execution time per frame after C level and
hardware level optimizations.

Speech Encryption
Algorithm

Execution
time/frame (in ms)

C level

Execution
time/frame (in

ms)
 Hardware level

Trivium 71.034 15.884
Mickey v2.0 61.977 6.349

Grain v1 - 80 bit key 67.893 11.815
Grain v1 -128 bit key 70.102 14.209

Scrambling 65.340 10.053
RSC 74.298 18.644

Chaotic map&
Blowfish

78.112 21.115

As it can be seen in Table 4, the smallest
execution time per frame (in ms) at C level is
obtained for the implementations of Grain v1 (80 bit

Performance Analysis of Real Time Implementations of Voice Encryption Algorithms using Blackfin Processors

163

and 128 bit key) and by the scrambling algorithm
(approximately 65.5 ms). Mickey v2.0 algorithm has
the smallest execution time at hardware level, only
6.439 ms. The highest execution time is obtained at
software level and at hardware level by chaotic map
&Blowfish algorithm (78 ms, respectively 21 ms).

Memory optimization techniques such as caching
and data placement were also used to bring down the
processing time. It was not possible to include the
entire data inside the internal RAM of the DSP. For
this reason, less frequently accessed data was kept in
SDRAM which was comparatively slower.
Frequently accessed functions were cached. A
better optimization is achieved by writing the
functions which are computationally intensive in
assembly language. The result is a substantial
reduction of the number of cycles needed for
computation.

In Table 5, the CPU time for optimized and non-
optimized speech encryption implementations is
shown for each time consuming function.

Table 5: CPU time for optimized and non-optimized
algorithms implementations.

Algorithm Time consuming
functions

No
Optimi-
zation

With
Optimiza-

tion
Trivium Multiplying the

algebraic normal
form of two

boolean functions

3.25
Mcycles

77
Kcycles

Mickey v2.0 Register clocking 2.0
Mcycles

55
Kcycles Keystream

derivation
Grain v1 - 80 Initialization phase 2.95

Mcycles
84

Kcycles
Grain v1 -128 Initialization phase 3.20

Mcycles
98

Kcycles
Scrambling FFT 2.80

Mcycles
96

Kcycles IFFT
RSC Forward Error

Correction
3.55

Mcycles
120

Kcycles
Chaotic map
& Blowfish

Chaotic key
generation 4.2

Mcycles
155

Kcycles Subkey generation
for Blowfish

For Trivium algorithm the most consuming
function includes the multiplication of two Boolean
functions using their algebraic normal form.
Optimizing this function reduces the number of
cycles with more than 2 Mcycles. For Mickey v2.0
cipher there are two time consuming functions:
register clocking and keystream derivation, which if
optimized save approximately 1.5 Mcycles. The
initialization phase is the most consuming for Grain

v1 algorithm (80 bit key or 128 bit key). Optimizing
this function the number of cycles decreases with
almost 2 Mcyles. For the scrambling technique, the
FFT and IFFT functions consume approximately 3
Mcycles. After the optimization, these functions
require less than 1 Mcycles. RSC algorithm has only
one time consuming function, which is the Forward
Error Correction. It’s optimization is significant,
from 3.55 Mcycles to 120 Kcycles. The cipher
which uses chaotic map and Blowfish algorithm for
voice encryption has two important functions:
chaotic key generation and subkey generation for
Blowfish. The reduction of clock cycles is high,
from 4.2 Mcycles to 155 Kcycles.

Based on the results in Table 5, we can calculate
the Clock Rate Reduction (CRR). This is defined as
in equation (1), where X represents the number of
clock cycles consumed by original code (before
optimization) and Y is the number of clock cycles
consumed by the optimized code. The CRR values
for all implemented encryption algorithms can be
seen in Table 6. As it can be observed, the best CRR
was obtained for Trivium algorithm (41.21%),
followed by Mickey v2.0 (35.36%). The smallest
CRR was obtained for chaotic map and Blowfish
algorithm, 26.09%. ܴܴܥ = (ܺ − ܻ)ܻ × 100% (1)

Table 6: CRR value for all speech encryption algorithms.

Algorithm CRR
Trivium 41.21%

Mickey v2.0 35.36%
Grain v1 - 80 34.11%
Grain v1 -128 31.65%

Scrambling 28.16%
RSC 28.58%

Chaotic map &
Blowfish 26.09%

We have also performed subjective analysis for
the offline and real-time implementation of the
evaluated speech encryption algorithms and the
results are shown in Figure 9.

In subjective analysis, the encrypted speech
signal is listened and the quality of it will be
determined only based on the listener’s opinion. Ten
listeners have graded the six algorithms. Each
person has listened to 10 distinct audio files and then
they gave grades on a scale of 0 to 10. As it can be
seen from Figure 9, the scores confirm the fact that

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

164

offline speech encryption algorithms’
implementations have better performances than the
real-time implementations. “O” stands for offline
implementation and “RT” stands for real-time
implementation. The best results in subjective
analysis were for offline Mickey v2.0 algorithm
(9.1), followed very closely by offline RSC (8.92)
and by offline Trivium (8.91). The worst results
were for real-time implementations, especially of
algorithms such as Grain v1 (7.14), RSC (7.32) and
Trivium (7.34).

Figure 9: Scores for offline and real-time implementations.

6 CONCLUSIONS

Because secure communications are extremely
important nowadays, we presented in this paper six
speech encryption techniques that can be used in
real-time applications. The implementations were
performed in C and the code was ported on Blackfin
ADSP-BF537. Thorough optimization of the code
was carried out to achieve real-time
implementations. The optimization process was
performed step by step by using different methods
which includes compiler tools, small function inline
expansion, and intrinsic functions and so on. We
were able for all algorithms to reduce the execution
time per frame to less than 21.5 milliseconds. The
results are ideal and meet the needs of engineering
applications: real-time implementations of speech
encryption algorithms on hardware platforms.
However, it can be seen that the best results
(smallest number of cycles and execution time per
frame) were obtained for Mickey v2.0 stream cipher
implementation and the worst results were obtained
for the encryption algorithm proposed in
(Ulkareem, 2012), which is based on chaotic map
and Blowfish cipher.

Taking into consideration the subjective analysis
results, it can be observed that offline
implementations of the algorithms provide better
speech quality than real-time implementation. All in
all, the proposed speech encryption algorithms have
a good audio quality, which is an extremely
important feature for communication applications.

This work can be extended to developing
hardware products which can be used to ensure
secure real-time communications. Also, the
algorithms we have selected for speech encryption
can be implemented on other DSP platforms, which
will offer more optimization methods and better
performances.

ACKNOWLEDGEMENTS

The work has been funded by the Sectoral
Operational Programme Human Resources
Development 2007-2013 of the Ministry of
European Funds through the Financial Agreement
POSDRU/187/1.5/S/155536, by the Sectoral
Operational Programme Human Resources
Development 2007-2013 of the Ministry of
European Funds through the Financial Agreement
POSDRU/159/1.5/S/134398, and by the program
Partnerships in priority areas – PN II carried out by
MEN-UEFISCDI, project No. 47/2014.

REFERENCES

Tremain, T. E., 1982. The Government Standard Linear
Predictive Coding LPC-10. In: Speech Technology,
pp.40-49.

McCree, A., Kwan, T., George, E. B.,Viswanathan, V.,
1996.A 2.4 kbit’s MELP coder candidate for the new
U.S. Federal Standard. In: Acoustics, Speech, and
Signal Processing, IEEE International Conference,
vol.1, pp. 200-203.

Supplee, L. M., Cohn, R. P., Collura, J. S.,McCree, A.,
1997. MELP: the new Federal Standard at 2400bps.
In: Acoustics, Speech, and Signal Processing, IEEE
International Conference, vol.2, pp. 1591-1594.

Canniere, C., Preneel, B., 2006.Trivium Specifications. In:
eSTREAM, ECRYPT Stream Cipher Project.

Babbage, S., Dodd, M., 2006. The stream cipher MICKEY
2.0. In eSTREAM, ECRYPT Stream Cipher Project.

Hell, M., Johansson, T., Meier, W., 2007. Grain- A Stream
Cipherfor Constrained Environments. In: International
Journal of Wireless and Mobile Computing, vol. 2, pp.
86-93.

Ravikrindi, R., Nalluri, S., 2015. Digital Signal
Processing, Speech encryption and decryption,
availableat https://www.scribd.com/doc/23336087/

Performance Analysis of Real Time Implementations of Voice Encryption Algorithms using Blackfin Processors

165

11-speech-encryption-and-decryption (Accessed: July
2015).

Babu, A. A., Yellasiri, R., 2012.Symmetric Encryption
Algorithm in Speech Coding for Defence
Communications. In: Journal of Computer Science &
Information technology, vol. 4, pp. 369-376.

Ulkareem, M., Abduljaleel, I. Q., 2013.Speech Encryption
Using Chaotic Map and Blowfish Algorithms. In:
Journal of Basrah Researches, vol. 39, no. 2, pp. 68-
76.

ADSP-BF537 Blackfin Processor Hardware Reference
manual, Revision 3.4 (2013).

Wollinger, T. J., Wang, M., Guajardo, J., Paar, C., 2000.
How Well Are High-End DSPs Suited for the AES
Algorithms? In: Proceedings of the Third Advanced
Encryption Standard Candidate Conference, pp. 94-
105.

Good, T., Benaissa, M., 2008.Hardware performance of
eStream phase-III stream cipher candidates. In: State
of the Art of Stream Ciphers (SASC), pp. 163-173.

Servetti, A., De Martin, J.C., 2002.Perception-based
partial encryption of compressed speech. In: IEEE
Transactions on Speech and Audio Processing, vol.10,
pp. 637 – 643.

ITU-t recommendation g.729, 1996, coding of speech at 8
kbit/s using conjugate-structure algebraic-codeexcited-
linear-prediction (cs-acelp).

Chen, N., Zhu, J., 2007.Robust speech watermarking
algorithm. In: Electronics Letters, vol. 3, pp. 1393-
1395.

Girin, L., Firouzmand, M., Marchand, S., 2007.Perceptual
Long-Term Variable-Rate Sinusoidal Modeling of
Speechǁ. In: IEEE Transactions on Audio, Speech, and
Language Processing, vol.15, pp. 851 – 861.

Tingting, X., Zhen, Y., 2009.Simple and effective speech
steganography in G.723.1 low-rate codes. In:
International Conference on Wireless
Communications & Signal Processing, pp. 1 – 4.

Merit, K., Ouamri, A., 2012.Securing Seech in GSM
Networks using DES with Random Permutation and
Inversion Algorithms. In:International Journal of
Distributed and Parallel Systems (IJDPS), vol.3, no.4,
pp.157-164.

Kaur, H., Sekhon,G. S., 2012.A Four Level Speech Signal
Encryption Algorithm. In: International Journal of
Computer Science and Communication (IJCSC), vol.
3, no. 1, pp. 151-153.

Knezevi, M., Batina, L., Mulder, E., Fan, J., Gierlichs, B.,
Lee, Y. K., Maes, R., Verbauwhede I., 2013.Signal
Processing for Cryptography and Security
Applications.In Handbook of Signal Processing
Systems, pp. 223-241.

Olausson, M.,Dake, L., 2003.The ADSP-21535 Blackfin
and Speech Coding.InProceedings of the Swedish
System-on-chip Conference 2003.

Blackfin DSP Instruction Set Reference, 2002.
ADSP-21535 Blackfin DSP Hardware Reference, 2002.
ITU-t recommendation on g.723.1, 1996, dual rate speech

coder for multimedia communications transmitting at
5.3 and 6.3 kbit/s.

ETSI GSM Fullrate Speech Codec for Analog
DevicesBlackfin, Bayer DSP Solutions, 2008.

Bertini, G.,Fontata, F., Gonzalez, D.,Grassi, L., Magrini,
M., 2004.Voice Transformation Algorithms with Real
Time DSP Rapid Prototyping Tools, unpublished.

Shaked, Y., Cole, A. L., 2004. Implementation of MELP
based Vocoder for 1200/2400 bps, The EE Project
Contest 2000, Technion Signal and Image Processing
Lab, unpublished.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

166

