K: A Wide Spectrum Language for Modeling,
Programming and Analysis*

Klaus Havelund, Rahul Kumar, Chris Delp and Bradley Clement
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

Keywords: Modeling, Programming, Constraints, Refinement, Verification, SMT, Analysis, SysML, Translation.

Abstract: The formal methods community has over the years proposed various formally founded specification languages
based on predicate logic and set theory, typically with textual notations. At the same time the model-based en-
gineering community has proposed often less formally founded languages such as UML and SysML, typically
with graphical notations. Although the graphical notations have become highly popular in industry, we argue
that textual notations can be attractive in many situations. We report on an effort to provide a textual notation
for SysML, realized in a language named K. K supports classes, multiple inheritance, predicate logic and set
theory. K contains programming constructs, and can thus be considered as a wide-spectrum modeling and
programming language. We further explain the translation of a subset of this language to the input language of
the SMT-LIB standard, and the application of Z3 for analysis of the generated SMT-LIB formulas. The entire
effort is part of a larger effort to develop a general purpose SysML development framework for designing

systems, in support of NASA’s proposed 2022 mission to Jupiter’s moon Europa.

1 INTRODUCTION

Modeling is the activity of formulating an abstract
description of a system, for example to understand
the system before it is implemented. Modeling in-
cludes activities such as requirements capture in the
initial phases and design of higher-level architectural
decisions in later stages. Modeling has been stud-
ied by various communities, of which at least two
can be identified: the model-based engineering com-
munity and the formal methods community. The
model-based engineering community has suggested
modeling languages such as UML (OMG, 2015) and
SysML (OMG, 2012), a variant of UML. These lan-
guages typically come equipped with graphical nota-
tions (concrete syntax). Both UML and SysML have
been designed by the OMG (Object Management
Group) technology standards consortium. SysML is
meant for systems development more broadly consid-
ered, including physical systems as well as software
systems, in contrast to UML, which is mainly meant
for software development. The graphical notations
have received a high degree of popularity in industry
due to their two dimensional format, also sometimes

*The research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

Havelund, K., Kumar, R., Delp, C. and Clement, B.
K: A Wide Spectrum Language for Modeling, Programming and Analysis.
DOI: 10.5220/0005741401110122

referred to popularly as boxology: boxes and arrows.
However, drawbacks of these languages include lack
of precise semantics, lack of analysis capabilities, te-
dious GUI operations in tools supporting the graphi-
cal notations, requiring lots of visual real estate even
for simple models, as well as large volumes of tech-
nologies. Learning UML and SysML is not just learn-
ing very large languages, it is also learning a large
set of additional tools needed to work with models.
We formulate the hypothesis that some of these draw-
backs in part are due to the lack of a simple textual
notation, at a size comparable to a programming lan-
guage notation. As evidence of this hypothesis, one
may observe, that software developers mostly prefer
to program in textual languages.

From an even earlier point in time, since the
1960s, the formal methods community, part of the
computer science community, and closely connected
to the programming language community, has pro-
posed numerous formally founded specification lan-
guages with textual notations. Several of these are
based on predicate logic and set theory. These lan-
guages are, compared to UML and SysML, concise,
small, well defined in the form of semantics, and in
recent time well supported with analysis capabilities.
The obvious observation is that it might be fruitful
to study the interaction between the two classes of

111

In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 111-122

ISBN: 978-989-758-168-7

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

languages. Consider furthermore that programming
languages are gaining in abstraction, such as for ex-
ample combining object-oriented and functional pro-
gramming. An example is Scala, which has many
commonalities with very early formal specification
languages, such as for example VDM (Bjgrner and
Jones, 1978), and specifically its object-oriented vari-
ant VDM™™ (Fitzgerald et al., 2005). The study
should therefore include the interaction between lan-
guages with graphical notations, and languages with
textual notations, such as formal methods modeling
languages, and programming languages

We report on an effort to develop a textual nota-
tion for SysML. For this purpose we have developed
a language named K (Kernel language) with a tex-
tual notation inspired by notations used in the formal
methods community. K corresponds to SysML'’s class
diagrams plus constraints. It is our plan to map other
SysML language concepts into this kernel, rather than
extending the K language to incorporate the rest of
SysML. K supports object-oriented concepts such as
classes, multiple inheritance, and object instances.
The contents of classes can be typed values, includ-
ing functions, and constraints over these expressed
in higher-order predicate logic. K also contains pro-
gramming constructs such as variables/properties, as-
signment statements, and looping constructs, and can
as such be seen as a wide-spectrum modeling and pro-
gramming language. The K language provides an al-
ternative to modeling with the mouse in tools that typ-
ically support SysML: namely writing textual mod-
els in the K notation directly, just like one normally
writes programs. K can furthermore be seen as a vehi-
cle for giving semantics to SysML, providing analysis
capabilities. It is our hypothesis, that modeling can
be seen as programming in a language where some
parts of the model (program) at any point in time are
executable, and some maybe are not (yet). Support-
ing this hypothesis is the large number of language
constructs shared by modeling and programming lan-
guages.

The idea of merging modeling and programming
in one language has been suggested before, as will
be discussed in the related work section. Although K
is not much different from previously suggested for-
malisms, our contribution is the creation of K specifi-
cally in support of a SysML model engineering tool
set under development, to be used by designers of
the proposed 2022 mission to Jupiter’s moon Europa,
also referred to as the Europa Clipper mission con-
cept (Europa Clipper Mission, 2015). The resulting
tool set will support graphical SysML modeling using
MagicDraw (MagicDraw, 2015), as well as browser-
based model viewing and editing, including of textual

112

K models. A first-order subset of K is furthermore
translated to the input language of the SMT-LIB stan-
dard, and currently processed with the Z3 SMT solver
for proving satisfiability of class definitions (are the
constraints consistent?), and model finding (find vari-
able assignments satisfying constraints, for example
used in task scheduling). The contribution here is the
handling of (multiple) class inheritance, which is typ-
ically not supported by similar languages translated to
SMT-LIB, as well as the allowance of recursive class
definitions. Multiple inheritance is a crucial part of
SysML, and therefore of K.

The paper is organized as follows. Section 2 intro-
duces a subset of the K language through an example,
which is similar to examples typically used to illus-
trate such formal specification languages. Section 3
outlines the translation from K to the SMT-LIB in-
put language for the purpose of analysis of K models.
This section is based on a different example illustrat-
ing how K is actually currently used at JPL. Section
4 explains the integration of K within the SysML de-
velopment framework, as well as the usage of this.
Section 5 discusses related work, and finally Section
6 concludes the paper.

2 INTRODUCTION TO K

In this section we introduce the K language. We use
the K model in Figure 1 as our running example for
discussing core concepts in K. The example shows a
model of a file system modeled using K. It is intended
to be a basis for discussing language features, and not
a complete model of a file system.

K is a high level textual language which supports
multiple paradigms. It allows one to create packages,
which are collections of classes. Packages can be im-
ported by other K files. Line 1 in Figure 1 shows
an example of a package declaration. Classes, as in
other object-oriented languages, provide a means for
abstracting and grouping properties (variables). In K,
classes may contain properties, functions (there is no
distinction between functions and methods), and con-
straints (requirements). Scoping rules in K are similar
to languages such as Java and C++. Lines 9 — 12 in
Figure 1 declare an Entry class, which contains two
members: property name of type String, and function
size that takes no arguments and returns an Int. The
function implementation is not specified for function
size. String is one of the six primitive types provided
by K: Int, Real, String, Char, Unit, and Boolean. K
also provides the following collections:

Bag: collection of items not subject to any order or
uniqueness constraints.

O 00~ N Wi —

package examples. fs

BLOCK_SIZE : Int

type Byte =
{I'b : Int :— 0 <= b &
b < 256 1}

class Entry {
name : String
fun size : Int

}

class Dir extends Entry {
var contents Set[Entry]
fun size: Int {
contents . collect(e —
e.size ()).sum()
}
}

class File extends Entry {
contents Seq[Block]
req size () <=
contents.size () x*
BLOCK_SIZE
}

class Block {
bytes : Seq[Byte]
fun size: Int { bytes.size () }
req size () <= BLOCK_SIZE

}

class FS {
dir : Dir

fun mkDir(n: String) : FS
pre !exists
e : dir.contents :—
e.name = n
post S$result.dir.size ()
= dir.size ()

newDir : Dir = Dir(name::n)
nc : Set[Entry] =
dir.contents + newDir
FS(dir ::
Dir(name:: dir .name,
contents ::nc))

}

fun rmDir(n: String) : FS
pre exists e dir.contents :—
e.name = n
post S$result.dir.size ()
<= dir.size ()

Figure 1: A simple model of a file system using K.

K: A Wide Spectrum Language for Modeling, Programming and Analysis

Seq: collection of items subject to an ordering, but
no uniqueness constraints.

Set: collection of items subject to uniqueness, but no
ordering constraints.

OSet: collection of items subject to uniqueness, as
well as ordering constraints.

K provides predicate subtypes. Line 5 specifies a sub-
type named Byte, which is derived from the Int type
but restricted to values between 0 and 256. K allows
classes to inherit from one or more classes. For ex-
ample, class Dir, specified on lines 14 — 20 extends
the Entry class. As with other languages, inheritance
causes the child classes to inherit the instance vari-
ables and functions of the parent classes, but in ad-
dition, in K, the child classes also inherit the con-
straints from the parent classes. In the case of multi-
ple inheritance, K requires that the property names be
unique across all classes. Functions on the other hand
may be overloaded by changing the function signa-
ture. Both class File and Dir inherit from class Entry.
Line 15 declares the variable contents using the key-
word var, indicating that this variable is mutable (can
change value). Variables introduced without this key-
word (or with the keyword val) are constants. Lines
16 — 19 in Figure 1 show the implementation for the
size function in the Dir class. It makes use of the sum
function, that is provided by K for all numerical col-
lections. The size function is the same as declared
in class Entry. Currently, function bodies cannot be
declared more than once along an inheritance path.
Functions may take an arbitrary number of arguments
and return a single value. K also provides tuples to
group objects together. On line 32, we see a constraint
being specified for class Block using the req (require)
keyword. The constraint specifies that the size func-
tion of Block should always return a value that is less
than or equal to the value specified in the global prop-
erty SIZE_OF_BLOCK (left unspecified). Any num-
ber of constraints can be specified at the global scope
or within classes. Constraints are Boolean expres-
sions, that restrict the values variables can take. Con-
straints in a class can be considered class invariants.
Class FS (for FileSystem) contains two functions:
mkDir and rmDir. The mkDir function takes a sin-
gle argument (n of type String) and returns a FS ob-
ject which contains one additional directory entry that
has name n. The rmDir function has no body spec-
ified. Both functions are defined along with a func-
tion specification. Function specifications are a list
of pre and post conditions that describe the precondi-
tion and postcondition of the function. Any number
of specifications may be provided. Line 39 specifies
the precondition for function mkDir with the use of an
existential quantifier. It specifies that when creating a

113

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

directory in the file system, the given name n should
not exist in the current set of entries in the file system.
K provides both existential and universal quantifica-
tion in its expression language. For the same func-
tion, line 42 specifies the postcondition. $result is a
reserved word that refers to the return value of the
function. It can only be used when specifying post-
conditions. The postcondition for mkDir specifies that
function mkDir returns a FS object that has the same
size as the current FS object, which was used to create
the new directory. Lines 44 — 51, the body of function
mkDir, form a block consisting of the declaration of
two constants: newDir and nc, followed, in line 48, by
the creation (and return) of a new FS object by calling
the constructor for class FS. Note that the entries of a
block are not separated by semicolon (‘;’). In fact,
K does not have a semicolon (nor newline) as state-
ment separator, as for example seen in the program-
ming language Scala. The only argument provided to
the FS constructor is a Dir object which contains one
additional Dir entry whose name is n. K provides con-
structors automatically for all classes where the argu-
ments are named arguments. Each named argument is
of the form ‘member :: value’ where the ‘::” notation
is used as a form of assignment. Multiple named ar-
guments can be provided as a comma delimited list. It
is not necessary to specify a value for all members of a
class. Any members that are specified in a constructor
call are assigned the specified value, and the rest are
left underspecified. Function rmDir is specified with
no body, but only function specifications. The func-
tion specifications require that function rmDir only ex-
ecute if the provided directory n exists in the current
object’s contents. The postcondition specifies that the
resulting FS object should be either the same size or
smaller relative to the current object.

Expressions in K are the core of the language. Ex-
pressions in K allow one to write assignment state-
ments (side-effects), binary expressions (such as and,
or, implication, iff etc.), logical negation, arithmetic
negation, quantification, ‘is’ for checking type, and
‘as’ for type casting. Any expression can make use
of other defined constructs such as variables, function
application, lambda functions, and dot expressions.
K also supports control expressions such as if-then-
else, while, match, for, continue, break, and return.
These expressions are similar to control expressions
provided in programming languages such as Scala or
Java. A detailed description of the expression lan-
guage is beyond the scope of this paper.

K also provides multiplicities as part of the lan-
guage. Multiplicities in K are influenced by similar
concepts in languages such as UML/SysML. In K,
multiplicities can be used as a short hand for speci-

114

fying collections and also restricting the size of col-
lections. Figure 2 shows a K model of a Person that
has various member properties, and the correspond-
ing inferred type for each member property. We will
analyze each of these individually.

Each Person can have exactly one mother. This is
specified by line 4. No explicit multiplicity is speci-
fied, which makes it a singleton. A Person can also
have many unique children, which is specified by line
5 using the Set collection. Line 6 specifies that a
Person may have many cars. It is written using a
modifier and a multiplicity, which semantically trans-
lates to a Set (K default for a multiplicity is Bag) of
Car. Finally, a person may own one or more portfo-
lios (prtflios, specified to have a multiplicity of 1 or
more), where each entry itself is a Set of Stock. This
translates to prtflios being a Bag of Set[Stock] with at
least 1 entry and no upper limit.

SysML models can also carry meta data informa-
tion in them (sometimes introduced by tools). To ac-
commodate for this, K also provides the annotation
construct. New annotations can be created and ap-
plied to classes, expressions, functions etc. Currently,
each annotation has a name and a type.

K also provides single line comments using ‘--" at
the beginning of the line, and block comments using
‘===(=*)" as the token for the beginning and the end
of the comment.

2.1 K Type Checking

The K type checker performs basic checks on the pro-
vided input to ensure naming and type consistency.
It is used to ensure that all declarations, expressions,
annotations etc. are logically sound and reference
names (functions, members, variables) that exist and
are type consistent in the given context. Type infor-
mation for all expressions and any other inferences
made by the type checker are saved and made avail-
able to all other analyses/modules in the K tool chain.
Further, the type checker imposes a stricter set of rules
on the provided input to ensure that it can be com-
pletely and correctly translated to SMT. More details
are provided in Section 3. The type checker is im-
plemented as a stand alone module, which is invoked
after the AST has been constructed by a visitor (in-
terfacing with ANTLR). The implementation is done
using Scala.

3 TRANSLATING K TO SMT-LIB

In this section we illustrate the translation from K to
the SMT- LIB input language. SMT-LIB (SMT-LIB,

K: A Wide Spectrum Language for Modeling, Programming and Analysis

1 class Stock

2 class Car

3 class Person {

4 mother Person

5 children Set[Person]

6 unique cars Car [x]

7 prtflios Set[Stock] [1,x%]
8

Bag[Set[Stock]]
req prtflios.size() >= 1

1

2

3

4 Person

5 Set[Person]
6 Set[Car]

7

8

Figure 2: Example model (left) and inferred types (right) for members of class Person.

2015) is the standard “satisfiability modulo theories
library” for SMT solvers. The standard is used by nu-
merous SMT solvers, allowing comparison between
systems (for example in competitions). In addition,
it allows systems generating SMT-LIB formulas to
target any SMT solver processing this standard. In
our case we use the Z3 SMT solver (De Moura and
Bjgrner, 2008) to process the generated formulas, but
anticipate targeting other solvers in the near term.

3.1 The Source K Model

The translator currently covers a first-order logic sub-
set of the K language, corresponding to the model of
a SpaceCraft shown in Figure 3. The translated sub-
set includes classes, multiple inheritance, properties
of primitive types (Bool, Int, and Real), user-defined
class types, tuple types (cartesian product), functions,
pre/postconditions, and constraints. Functions, pre/-
postconditions, and constraints can be specified in
a rich expression language supporting conditionals,
class constructors, dot notation for accessing proper-
ties in objects, and universal and existential quantifi-
cation. Sets are under development but not covered
here. Currently not translated constructs include type
parameterized classes, statements with side-effects
(assignment) and their corresponding looping con-
structs, functions as first class citizens, type abbrevia-
tions and predicate subtypes, as well as multiplicities,
which will be treated as collection types. Recursive
functions can currently not be defined using function
definitions, but can be specified by providing function
signatures plus separate constraints.

The example illustrates the features of K that have
been used by engineers at JPL until the time of writ-
ing. The emphasis of these models is on structure of
artifacts and scheduling of events. The class Thing is
meant to represent entities that have weight. Instru-
ments, its radio sub-classes, and the SpaceCraft class
itself, inherit from class Thing. Class Instr defines a
power level. Requirements in the form of Boolean
constraints are imposed on power and weight. The
SpaceCraft class makes instances of instruments, de-
fines a combined sum instrWeight, and a constraint
on it with additional requirements. Such elements of

a model are so-called structural elements, what one
would normally see in a SysML class diagram.

The spacecraft in addition contains a system man-
ager, representing the software on board. For the pur-
pose of illustration, the system manager is defined as
a small scheduler of three events: a bootUp event,
re-booting the flight software computer, an initMem
event, initializing the computer memory, and a tkPic
event, taking a picture. An event is an instance of the
Event class, which defines an event as having a start
time and an end time appearing after the start time.
In addition, the Event class defines a function after,
which as argument takes another event ‘e’, and re-
turns true if the event (this) occurs after ‘e’. The def-
inition of the after function is inspired by Allen logic
(Allen, 1984). Finally, the model contains an instance
ShRaan of type SpaceCraft.

Given the spacecraft model, the general proof-
theoretic problem we want an answer to is whether
our classes are logically consistent. That is, whether
the constraints of each class are consistent (do not
evaluate to false such as for example is the case with:
‘x <0Ax>0"). From a semantics point of view,
it means that for each class there exists at least one
instance (object) of that class that satisfies the con-
straints. An SMT solver demonstrates satisfiability
by finding a model satisfying the constraints (model
finding). This model furthermore represents a sched-
ule of the events in the system manager.

3.2 The Translation to SMT-LIB

The SMT-LIB language (from here on referred to as
SMT-LIB) is equipped with a textual notation, and
supports typed first order predicate logic plus vari-
ous theories, including for example arithmetic, unin-
terpreted functions, and arrays. The syntax is LISP-
like, meaning for example that function calls such as
f(42, false) have the form (f 42 false). For the
51 line K model in Figure 3, the translator generates
333 lines of uncommented SMT-LIB code (additional
comments are generated to make the output easier for
humans to read). We shall below show formulas from
each category of formulas generated, covering all the
categories. Our main challenge in translating K to

115

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

1 class Thing {weight : Int}
2

3 class Event {

4 start : Real

5 end : Real

6 req start >= 0.0 &&
7 end > start

8 fun after (e Event)
9 Bool {

10 start >= e.end

11 }

12}

13

14 class Instr

15 extends Thing {
16 power : Real

17 req power >= 0.0
18 req weight > 0 &k

19 weight <= 1000
20}

21

22 class SmplRadio

23 extends Instr
24 class SmrtRadio

25 extends SmplRadio
26

27 class SysMngr {

28 bootUp Event

29 initMem Event
30 tkPic Event

31 req tkPic.after (initMem)
32 &k

33 tkPic . after (bootUp)
34}

35

36 class SpaceCraft

37 extends Thing {

38 instrWeight : Real

39 radio Instr

40 camera Instr

41 software SysMngr

42

43 req instrWeight =

44 radio.weight +
45 camera.weight

46

47 req notTooHeavy:

48 instrWeight <= 999
49 }

50

51 ShRaan SpaceCraft

Figure 3: A simple K model of a spacecraft.

SMT-LIB is how to translate classes supporting (mul-
tiple) inheritance and recursive references between
classes. This will be illustrated in the following.
Classes, Objects, and the Heap. Let’s first trans-
late a simple class, such as class Thing. We have
chosen to translate classes to the SMT-LIB concept
of datatypes. A datatype in SMT-LIB corresponds
to the classical notion of an algebraic datatype: a

116

named record, with a constructor function that when
applied to a sequence of values generates a value of
the datatype, while the values can be retrieved using
selector functions. The class Thing can be represented
in SMT-LIB as follows.

(declare—datatypes () ((Thing
(mk—Thing (weight Int)))))

This declaration declares the datatype Thing, the con-
structor mk-Thing, which can be called on a value w
of type Int as follows: (mk-Thing w), to produce a
value in type Thing. Reversely, given a value o in type
Thing, we can retrieve the weight by applying the se-
lector function weight to o as follows: (weight o).
Consider now the following schematic example of

two mutually recursive classes, a situation often oc-
curring in SysML modeling (relationships between
two classes) as well as in programming (i.e. linked
lists). Note that due to the declarative nature of K,
it is possible to initialize objects of such classes in
a recursive manner even without programming with
side-effects. If no constructors are applied, the solver
will assign objects.

class A { class B {

b : B a : A
} }

The following translation of this model to the SMT-
LIB datatypes A and B is not well-founded since it
contains recursion between A and B (it is illegal SMT-
LIB).
(declare—datatypes () (

(A (mk-A (b B)))

(B (mk-B (a A)))))
The solution is to operate with references to objects
rather than objects directly, exactly as done in any
runtime system for an object-oriented programming
language. In other words, we need a heap mapping
references to objects. For this purpose we define the
type of references as integers.

(define—sort Ref () Int)

We can now in SMT-LIB use Ref as the type of prop-
erties whose type in K is a class, they will now denote
references to objects of the class. This is illustrated by
the following definition of the SpaceCraft datatype.

(declare—datatypes () ((SpaceCraft
(mk—SpaceCraft
(weight Int)
(instrWeight Real)
(radio Ref) (camera Ref)
(software Ref)))))

Observe how the fact that SpaceCraft inherits from
Thing is modeled by the inclusion of the weight field
from Thing. Inheritance is simply modeled by prop-
erty inclusion in this manner. In order to define a

K: A Wide Spectrum Language for Modeling, Programming and Analysis

heap, we need a datatype that represents all the ob-
jects that can possibly be stored in the heap. The fol-
lowing datatype Any represents all the datatypes for
the individual classes, by lifting them to this single
type (null is a zero argument constructor). The type
Any corresponds to Java’s type Object.

(declare—datatypes () ((Any
(lift —Thing
(sel—=Thing Thing))
(lift —Instr
(sel—Instr Instr))
(lift —SpaceCraft
(sel—SpaceCraft SpaceCraft))

null)))

Now we can define the heap as an array from refer-
ences of type Ref to Any.

(declare—const heap (Array Ref Any))

Accessing the Heap. We first define a function
deref, which when applied to a reference returns the
Any object at that entry.

(define—fun deref ((ref Ref)) Any
(select heap ref))

With this function we are now ready to define func-
tions, which can test what kind of object is at a certain
location in the heap, as well as retrieve that object.
The following functions perform these two tasks for
the case of the Instr objects (for each datatype con-
structor C, SMT-LIB generates an is-C function that
can determine whether an object is constructed with
the constructor).
(define—fun deref—is—Instr

((this Ref)) Bool
(is—lift —Instr (deref this)))

(define —fun deref—Instr
((this Ref)) Instr
(sel—Instr (deref this)))

As we have seen, K classes can contain properties of
types that are classes. For example the SpaceCraft
class contains a property radio of type Instr. In an
object-oriented language like K with inheritance, such
a property can denote any object that is of type that
either is equal to, or sub-classes Instr. In order to for-
mulate invariants on objects of class SpaceCraft, we
therefore need to be able to determine whether a ra-
dio object is equal to, or sub-classes Instr. This task
is performed by the following function, the body of
which is a disjunction between the three alternatives.

(define —fun deref—isa—Instr
((this Ref)) Bool
(or
(deref—is—Instr this)
(deref—is—SmplRadio this)
(deref—is—SmrtRadio this)))

Getters of Properties in Classes. Functions and
requirements access properties. An example is the ex-
pression weight > 0 in class Instr. These accesses are
wrapped into getfer functions. As an example, the
weight property of the class Instr can be accessed with
a call of the following function, named Instrlweight
(SMT-LIB allows symbols such as ‘I’ in names, to
be discussed further below), on a reference that is as-
sumed to refer to an Instr object.

(define—fun Instr!weight
((this Ref)) Int
(weight (deref—Instr this)))

The above definition assumes that the this reference
denotes an Instr object, and not an object of any sub-
class on Instr, hence the ‘" symbol (for exact! class)
in the name. This is sufficient when checking satisfi-
ability of the class Instr class itself. However, when
checking the satisfiability of, for example, the Space-
Craft class, which contains a property of type Instr,
as for example radio : Instr, we have to assume that
radio in addition potentially can refer to any object
of a class that sub-classes Instr, which in this case
is either SmplRadio or SmrtRadio. This is achieved
with the following alternative getter function, named
Instr.weight, for the weight property of the class Instr.

(define—fun Instr.weight
((this Ref)) Int

;oif
(ite (deref—is—Instr this)
; then
(weight (deref—Instr this))
; else if
(ite (deref—is—SmplRadio this)
; then
(weight (deref—SmplRadio this))
; else
(weight (deref—SmrtRadio this))
)))

Each line in the body is preceded with a comment us-
ing the comment symbol ‘;’, explaining the structure
of the LISP version of ‘if e; then ¢; else e3’, which is
‘(ite e; e e3)’. The reason for not just using the lat-
ter more general function Instrument.weight for all ac-
cesses to the weight property is that conditionals make
it harder for an SMT solver. Even moderately sized
expressions with several accesses to variables become
unsolvable in reasonable time in the presence of such
conditional expressions.

Functions. Functions are translated directly to
SMT-LIB functions. Each function is translated in
two versions, corresponding to the two versions of the
getter functions, and named using respectively class-
NamelfunctionName and className.functionName,
to suggest which getter functions are called inside

117

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

the function, again depending on the calling context
(whether this refers to the exact class or potentially a
sub-class). As an example, the following is the trans-
lation of the after function in the class Event, only
showing one of the two versions, which are the same
in this case.
(define—fun Event. after

((this Ref)(e Ref)) Bool

(>= (Event.start this)

(Event.end e)))

The first parameter is a reference (named this) of type
Ref. The this reference is meant to refer to the ob-
ject upon which the function is called. Consider for
example a call like: tkPic.after(initMem) in line 31 of
Figure 3. Here tkPic denotes a reference to which the
parameter this is bound. The second parameter is the
user-provided parameter.

Invariants and Assertions. We are finally able
to present how class invariants are generated and as-
serted. These validate the satisfiability of our classes.
The invariant for a class is generated as a function that
as argument takes a this reference to an object of that
class. Let’s take the example of the SysMngr class.
The generated invariant is the following.

(define—fun SysMngr.inv
((this Ref)) Bool
(and
(deref—isa—Event
(SysMngr!bootUp this))
(deref—isa—Event
(SysMngr!initMem this))
(deref—isa—Event
(SysMngr!tkPic this))
(and
(Event. after
(SysMngr! tkPic this)
(SysMngr!initMem this))
(Event. after
(SysMngr!tkPic this)
(SysMngr ! bootUp this)))))

The body of this function is a conjunction of the con-
ditions that have to hold on the SysMngr object re-
ferred to by this. There are four such: three for the
property definitions in lines 28 — 30 in Figure 3, and
one for the requirement on line 31. Each of the prop-
erty definitions results in a condition that verifies that
the property is of the right type, in these three cases:
that each of the properties bootUp, initMem, and tkPic,
are objects of any sub-class of class Event (the use of
‘isa’), although in this case there are no sub-classes
of Event. The last condition, corresponding to the re-
quirement, illustrates how functions are called, in the
case the function after.

We are now finally ready to assert the well-
formedness of the model. For each class two asser-
tions are generated, one that asserts the existence of

118

an object of the class in the heap, and one asserting
that every object of that class in the heap satisfies the
invariant of that class. Below are these two assertions
for the SysMngr class.

(assert (exists ((this Ref))
(deref—is—SysMngr this)))

(assert (forall ((this Ref))
(=>
(deref—is—SysMngr this)
(SysMngr.inv this))))

Solving the Model. Given the generated SMT-
LIB model outlined above, an SMT solver follow-
ing the SMT-LIB standard can determine whether the
model is satisfiable. Our currently used SMT solver is
Z3. If the model is not satisfiable, the solver will just
return ‘not satisfied’. One can in this case analyze
subsets of the model, eliminating assertions to dis-
cover which assertions caused the model to become
unsatisfiable, in the best case the minimal set of such
assertions. We are working on such a violation expla-
nation capability.

If the model on the other hand is satisfiable, an
assignment to variables in the model will be returned
by the solver. In our case the model outlined above
is satisfiable and solves in 2 seconds. The returned
assignment is shown in Figure 4. This view has been
produced by processing the output from Z3, which is
less comprehensible. The assignment shows the fol-
lowing. The outermost ShRaan property in the heap
denotes a SpaceCraft object. This object contains var-
ious fields, for example the weight property with the
value 18, and the software property, which denotes
the reference (of type Ref) 21. This reference in turn
denotes a SysMngr object containing three references
bootUp (25), initMem (26), and tkPic (27), each of
which are events. Due to the constraint in line 31 of
Figure 3 these events have been scheduled such that
the taking of the picture occurs after the boot as well
as after the memory initialization. This can be seen
from the fact that the end times of the boot and mem-
ory initialization events at references 25 and 26 are
less than the start time of the take picture event at ref-
erence 27. Note that the values suggested by the SMT
solver are not necessarily realistic, although they sat-
isfy the provided constraints.

4 KINPRACTICE

Currently, K is used to analyze models created for the
NASA Europa Clipper Mission Concept. Figure 5
gives an overview of the usage scenarios for the K
language and tool chain.

K: A Wide Spectrum Language for Modeling, Programming and Analysis

4 4

+ +

| Variable | Value

+
+

| ShRaan

| | radio:: Ref 19,

| Ref 19

IRef 20 IInstr(weight::606, power::4770.0)

IRef 21 ISysMngr(bootUp:: Ref 25,

|Ref 25 | Event(start::9659.9088, end::9660.9088)
|Ref 26 |Event(start::7854.0, end::7855.0)

IRef 27 |Event(start::17257.0, end::21593.0)

4 4+

initMem :: Ref 26, tkPic::

| SpaceCraft(weight::18, instrWeight::966.0, |
camera:: Ref 20, software:: Ref 21)l
| SmplRadio (weight::360, power::2331.0) |

Ref 27)

+
+

+ +

Figure 4: Output of the K tool chain for the spacecraft example.

The typical scenario involves modelers (of the Eu-
ropa Clipper mission concept) creating SysML dia-
grams in a tool such as MagicDraw and saving them
to a central model repository. This database of mod-
els is accessible via a REST API. The input to the
REST API is a unique identifier for a node (typically
a SysML package) in the model, and the result is a
list of all the nodes that are part of the package spec-
ified in the input. The result is provided as an array
of JSON objects, where each object contains infor-
mation such as name, type, owner, etc. Typically, the
types of objects are classes, constraints, expressions,
and member properties. The K tool chain takes this
input and converts each node in the list of nodes to a
corresponding K AST object. Since the list of nodes
received from the REST API is unordered and un-
structured, we perform multiple passes on the list of
nodes. The first pass is performed to create the list of
classes in the model, followed by passes to populate
properties and constraints in each class. Once the K
model has been constructed, the K tool chain proceeds
normally with type checking and SMT analysis. Cur-
rently this scenario is based on a pull methodology
where a modeler has to initiate the K based transla-
tion and analysis. In the future, we plan on automat-
ing this effort and have it be executed on a regular ca-
dence with results made available through the model
database to a web application.

A second common scenario for using K is via the
web browser (K, 2015). We have created a simple
HTML based K code editor along with the function-
ality to invoke the K tool chain from the web browser.
This page is used for purposes of teaching, learning,
exploring, and prototyping with K. The web page also
provides a tutorial, documentation, and examples.

Finally, the K tool chain is also available as a bi-
nary download for all major operating systems. Users
may download the binaries and invoke the tool chain
from the command line. We expect that certain mod-
els of Europa Clipper mission concept are created and
analyzed directly as K models. Currently, there are
two such salient examples where K was used to cre-
ate and analyze requirements. The first model is a

series of scheduling constraints, which after model-
ing in K, were successfully analyzed in less than 20
seconds. The results of the analysis also discovered a
scheduling problem, that was later successfully con-
firmed by a significantly more cumbersome manual
analysis. The second model contains a series of high
level constraints that are analyzed using K for satisfi-
ability. This model solves in around 30 seconds. Due
to JPL’s information release restrictions, such details
cannot be shared at this time.

S RELATED WORK

K is a wide spectrum language with a textual nota-
tion, containing concepts such as classes, inheritance,
properties, functions, and expressions. Expressions
in K are very rich and provide a basis for express-
ing any higher order logic formula succinctly. The
language also contains constructs such as lists, sets,
loops etc. for performing general sequential pro-
gramming, functional programming, and object ori-
ented programming. The main goal is to automati-
cally translate SysML diagrams and models to K and
perform various types of analysis such as type check-
ing, satisfiability checking, and potentially execution.

The formal methods community has studied and
investigated wide spectrum specification languages in
detail. (Bjgrner and Jones, 1978; Bjgrner and Jones,
1982; Jones, 1990; Jones and Shaw, 1990) present
the VDM language, which provides a combination of
procedural and functional programming along with
sets, lists, maps, and higher order predicate logic in
proper mathematical notation. A natural evolution of
VDM was to introduce object orientation, as shown
in VDM (Fitzgerald et al., 2005). The RAISE
specification language (George et al., 1992) is another
wide spectrum language that takes inspiration from
VDM, Z (Spivey, 1988) and algebraic specification
languages. More recently, Asml presented in (Gure-
vich et al., 2005) presents a language where all oper-
ations operate on algebras. Alloy (Jackson, 2012) is

119

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

JSON

}

i ~’ANALYSTS
i \
Scala S~ !
o AST ‘ Type
_____________________ Visitor ' Checker
i
T =
JAVA Scala H
G SMT
Visitor e '
Bl Visitor Scala ; freilysas
N

Figure 5: K in practice.

a language intended for describing structure and ex-
ploring the design of the structure through the specifi-
cation of constraints. Alloy also provides seamless
integration with a SAT solver. FORMULA (Jack-
son et al., 2009) also presents a language for logic
programming where the model is then analyzed by
SMT solvers. FORMULA focuses on requirements
for incremental refinement purposes and design ex-
ploration.

In contrast to specification languages, high level
programming languages have also been developed
over time. SML (Standard ML) (Milner et al., 1997),
Ocaml (OCaml, 2015), and Haskell (Jones, 2003) be-
long to the same family of functional programming
languages with some support for classes and object
orientation. Python (Python, 2015) also provides a
unique perspective on combining object oriented and
functional programming. In our view, Scala (Scala,
2015) does so to the fullest extent. The close re-
lationship between Scala and VDM is discussed in
(Havelund, 2011). Fortress (Fortress, 2015) intro-
duced built-in notation for sets, lists, and maps, very
much resembling the notation in VDM.

Yet another class of recent languages has investi-
gated introducing specification constructs in program-
ming languages in the form of design-by-contract
(pre/postconditions and class invariants). Examples
of such languages include Eiffel (Meyer, 1988) and
SpeC* (Barnett et al., 2011). Scala also attempts
at providing such constructs, but through the use of
library functions on functional programs (Odersky,
2010). Finally, The JML language (Leavens et al.,
1998) allows to write design-by-contract specifica-
tions for Java as comments. These specifications and
constructs are ignored by the standard Java compiler.
Rather, they are processed with special tools; thus,
in some cases making them less valuable to the lan-
guage.

With the great improvements being made to SAT

120

and SMT solvers (SMT-LIB, 2015; De Moura and
Bjgrner, 2008), programming languages now are also
built with verification as a primary goal. Dafny
(Leino, 2010) provides explicit support for specifica-
tions in the program that can be used to specify func-
tional correctness constraints for programs. These
constraints and specifications are verified using the
Boogie (Barnett et al., 2006) verifier that uses Z3 as
the underlying SMT solver. Dafny is an excellent lan-
guage for performing verification, but lacks support
for inheritance and class invariants, which are a ne-
cessity for the kind of models we deal with. Similarly,
SpeC* also provides support for verifying the user
provided specifications. Why3 (Bobot et al., 2011)
provides a rich language for specification and pro-
gramming, called WhyML. Why3 relies on external
theorem provers (automatic and interactive) to then
verify the specification. Additionally, using WhyML,
one can also generate Ocaml programs using a correct
by construction automatic extraction procedure. In
contrast to using automated provers, interactive the-
orem provers such as PVS (Owre et al., 1992; PVS,
2015), Coq (Barras et al., 1997), and Isabelle (Nip-
kow et al., 2002), also provide languages to create
specifications and provide constraints, which can then
be discharged via a user guided process. Such tools
allow for proving much more complex properties, but
tend to be laborious and non-trivial to use.

Past research in formal modeling has also resulted
in various attempts at combining formal and semi-
formal languages. Work in (Lausdahl et al., 2009)
presents an approach to translate between UML and
VDM, and (Kim et al., 2005) presents work on
integrating a formal language such as Object-Z with
UML in a single combined framework. To the best of
our knowledge, these approaches have not focused on
translating constraints and integrating with an SMT
solver, and have been primarily focused on UML (not
SysML).

K: A Wide Spectrum Language for Modeling, Programming and Analysis

K is very close in spirit and ideology to many
of the aforementioned languages, but differs in many
respects as well. For example, due to the appli-
cation environment of K being targeted to SysML
models, proving class satisfiability and model find-
ing are of prime importance, something for which K
is optimized. K also provides support for specify-
ing and proving specifications with multiple inheri-
tance, something SysML models depend on greatly.
Integration with SMT solvers has proven to be useful
not only for proving class satisfiability, but also for
model finding (including scheduling) and model ex-
ploration. In model exploration, users manually ex-
plore the range of satisfiable solutions for the given
model using iterative refinement techniques (chang-
ing constraints manually).

6 CONCLUSIONS

We have presented an overview of the K language
in this paper. K is intended to be used in a model-
ing environment for proving satisfiability of SysML
models and exploring solutions to various types of
models, such as structure, planning/scheduling, etc.
We have also presented in detail, our methodology
for performing automatic translation of K models to
SMT-LIB, and using an SMT solver such as Z3 to
perform semantic model finding. Using manual meth-
ods of creating K models from SysML models and
reference materials, we have already observed K pro-
vide value in the modeling environment by discov-
ering unsatisfiability of scheduling problems in the
proposed Europa Clipper mission concept, which was
confirmed by external manual analysis. In our cur-
rent experience, K seems to be sufficient for creating
small to medium sized SysML models and proving
properties about them. Concerning problems faced,
a main challenge of course is the higher-order nature
of K, requested by mission engineers (expressiveness
prioritized over guaranteed analyzability). SMT-LIB
is generally first-order. Some problems are a con-
sequence of using SMT-LIB solvers, which struggle
with the combination of arrays (used for the heap and
for sets) and universal quantification. Additionally,
the use of Real numbers and arithmetic on them is
also a known SMT challenge, especially in the con-
text of arrays. We are now in the process of creating
tools to automatically translate SysML models to K
models (and back) and perform analysis on them us-
ing the K infrastructure. This will make it possible to
view a model as graphics as well as in text. The trans-
lation of K needs to be extended to cover more con-
structs, including statements with side-effects. Other

challenges include making K executable, for example
by translation to Scala, including executing OCL-like
expressions; providing support for reflection such that
models can query themselves; and making the K lan-
guage and textual notation user-extensible.

REFERENCES

Allen, J. F. (1984). Towards a general theory of action and
time. Artificial Intelligence, 23:123-154.

Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and
Leino, K. R. M. (2006). Boogie: A modular reusable
verifier for object-oriented programs. In Formal meth-
ods for Components and Objects, pages 364-387.
Springer.

Barnett, M., Fiahndrich, M., Leino, K. R. M., Miiller, P.,
Schulte, W., and Venter, H. (2011). Specification and
verification: the Spec# experience. Communications
of the ACM, 54(6):81-91.

Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.-
C., Gimenez, E., Herbelin, H., Huet, G., Munoz, C.,
Murthy, C., et al. (1997). The coq proof assistant ref-
erence manual: Version 6.1.

Bjgrner, D. and Jones, C. B., editors (1978). The Vienna De-
velopment Method: The Meta-Language, volume 61
of LNCS. Springer.

Bjgrner, D. and Jones, C. B. (1982). Formal Specifica-
tion and Software Development. Prentice Hall Inter-
national. ISBN 0-13-880733-7.

Bobot, F, Fillidtre, J.-C., Marché, C., and Paskevich, A.
(2011). Why3: Shepherd your herd of provers.
In Boogie 2011: First International Workshop on
Intermediate Verification Languages, pages 53-04,
Wroctaw, Poland.

De Moura, L. and Bjgrner, N. (2008). Z3: An efficient smt
solver. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 337-340. Springer.

Europa Clipper Mission (2015). http://www.jpl.nasa.gov/
missions/europa-mission.

Fitzgerald, J., Larsen, P. G., Mukherjee, P, Plat, N., and
Verhoef, M. (2005). Validated Designs For Object-
oriented Systems. Springer-Verlag TELOS, Santa
Clara, CA, USA.

Fortress (2015). https://projectfortress.java.net/.

George, C., Haff, P, Havelund, K., Haxthausen, A., Milne,
R., Nielsen, C. B., Prehn, S., and Wagner, K. R.
(1992). The RAISE Specification Language. The BCS
Practitioner Series, Prentice-Hall, Hemel Hampstead,
England.

Gurevich, Y., Rossman, B., and Schulte, W. (2005). Seman-
tic essence of AsmL. Theoretical Computer Science,
343(3):370-412.

Havelund, K. (2011). Closing the gap between specification
and programming: VDM™ and Scala. In Korovina,
M. and Voronkov, A., editors, HOWARD-60: Higher-
Order Workshop on Automated Runtime Verification
and Debugging, volume 1 of EasyChair Proceedings.
Manchester, UK.

121

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

Jackson, D. (2012). Software Abstractions: Logic, Lan-
guage, and Analysis. The MIT Press.

Jackson, E. K., Seifert, D., Dahlweid, M., Santen, T.,
Bjgrner, N., and Schulte, W. (2009). Specifying and
composing non-functional requirements in model-
based development. In Software Composition, pages
72-89. Springer.

Jones, C. B. (1990). Systematic Software Development us-
ing VDM. Prentice Hall. ISBN 0-13-880733-7.
Jones, C. B. and Shaw, R. C., editors (1990). Case Studies
in Systematic Software Development. Prentice Hall

International. ISBN 0-13-880733-7.

Jones, S. L. P. (2003). Haskell 98 language and libraries:
the revised report. Cambridge University Press.

K (2015). http://www.theklanguage.com.

Kim, S.-K., Burger, D., and Carrington, D. (2005). An
mda approach towards integrating formal and infor-
mal modeling languages. In FM 2005: Formal Meth-
ods, pages 448-464. Springer.

Lausdahl, K., Lintrup, H. K. A., and Larsen, P. G. (2009).
Connecting uml and vdm-++ with open tool support. In
FM 2009: Formal Methods, pages 563-578. Springer.

Leavens, G. T., Baker, A. L., and Ruby, C. (1998). Jml:
a java modeling language. In Formal Underpinnings
of Java Workshop (at OOPSLA’98), pages 404—420.
Citeseer.

Leino, R. (2010). Dafny: An automatic program verifier. In
Clarke, E. M. and Voronkov, A., editors, 16th Interna-
tional Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning, LPAR 2010, Dakar,
Senegal, April 25-May 1, volume 6355 of LNCS.
Springer.

MagicDraw (2015). https://www.magicdraw.com/.

Meyer, B. (1988). Eiffel: A language and environment for
software engineering. Journal of Systems and Soft-
ware, 8(3):199-246.

Milner, R., Tofte, M., and Harper, R., editors (1997). The
Definition of Standard ML. MIT Press. ISBN 0-262-
63181-4.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Is-
abelle/HOL: a proof assistant for higher-order logic,
volume 2283. Springer Science & Business Media.

OCaml (2015). http://caml.inria.fr/ocaml/index.en.html.

Odersky, M. (2010). Contracts for Scala. In Runtime
Verification - First Int. Conference, RV’10, St. Ju-
lians, Malta, November 1-4, 2010. Proceedings, vol-
ume 6418 of LNCS, pages 51-57. Springer.

OMG (2012). Systems Modeling Language (SysML).
http://www.omg.org/spec/SysML/1.3/.

OMG (2015). UML. http://www.omg.org/spec/UML/2.5/.

Owre, S., Rushby, J. M., , and Shankar, N. (1992). PVS:
A prototype verification system. In Kapur, D., edi-
tor, 11th International Conference on Automated De-
duction (CADE), volume 607 of Lecture Notes in Ar-
tificial Intelligence, pages 748-752, Saratoga, NY.
Springer-Verlag.

PVS (2015). http://pvs.csl.sri.com.

Python (2015). http://www.python.org.

Scala (2015). http://www.scala-lang.org.

122

SMT-LIB (2015). http://smtlib.cs.uiowa.edu.

Spivey, J. M. (1988). Understanding Z: A Specification
Language and Its Formal Semantics. Cambridge Uni-
versity Press, New York, NY, USA.

