
Whispers in the Cloud
A Covert Channel using the Result of Creating a Virtual Machine

Cong Li, Qingni Shen, Kang Chen, Yahui Yang and Zhonghai Wu
School of Software and Microelectronics & MoE Key Lab of Network and Software Assurance,

Peking University, Beijing, China

Keywords: Covert Channel, OpenStack, Virtual Machine.

Abstract: With the widespread use of cloud computing, people pay more attention to the security of cloud platforms.
For the case of some clouds, users are permitted to use the services, but they cannot communicate with each
other in the same cloud. In this paper, we present a new kind of user-level covert channel which we called
CCRCVM (Covert Channel using the Result of Creating a Virtual Machine). This covert channel exists in
OpenStack, which we have confirmed. This covert channel takes advantage of the result of creating a virtual
machine to make the users communicate. First of all, we describe the threat scenario of this covert channel.
Then, we describe the theory and communication process of the covert channel. Afterwards, we implement
the covert channel in our own OpenStack environment. We also measure the bandwidth and communication
accuracy of this covert channel in many times. Finally, we discuss how to mitigate and eliminate this channel.

1 INTRODUCTION

With the widespread use of cloud computing, people
pay more attention to the security of cloud platforms.
Thanks to the resource sharing, the resources can be
used more efficiently. However, resource sharing is a
double-edged sword. The information will be leaked
because of the resource sharing. Isolation is designed
to eliminate this kind of threat. It is still not strong
enough (Reuben, 2007). Malicious users can still
carry out the information leakage attack by covert
channels.

Covert channel is generally referred to as a
communication mechanism that is neither designed
nor intended to transmit information (Lampson,
1973). It has been widely recognized as a serious
threat to not only operating systems but also
virtualized platforms (Jaeger and Sreenivasan, 2007).

In multi-user systems, covert channel is a well-
known type of security attack. Originated in 1972 by
Lampson (Lampson, 1973), the threats of covert
channels are present in systems with shared
resources, such as file system objects (Lampson,
1973), virtual memory (Vleck, 1990), processor
caches (Percival, 2005), input devices etc. (Shah et
al., 2006) (Meade, 1993).

The cloud system is a multi-user system, so the
covert channel threat exists in cloud systems.

According to the place where the channels
communicate, we divide cloud covert channels into
two categories: virtual machine level (VM-level)
covert channel and user-level covert channel. The
great majority of cloud covert channels are VM-level.
There are some difficulties in these VM-level covert
channels. The VMs use the shared resources to
construct the covert channels. These cloud covert
channels usually need VMs to be co-residency
(Ristenpart et al., 2009) which means different VMs
run on the same host. Many researchers have focused
on this area (Varadarajan et al., 2015) (Bijon et al.,
2015) (Han, Y et al., 2014). In addition, the VMs’
behaviours are monitored closely by cloud providers
(Pitropakis et al., 2015) (Alarifi and Wolthusen,
2012). Therefore, these covert channels are hard to
use. Even so, the covert channel is still an important
threat to cloud platforms.

In this paper, we present a novel covert channel
called CCRCVM. This covert channel is a kind of
user-level cloud covert channel. This covert channel
happens between two users in the same cloud
platform. It uses the server-group to bind the virtual
machines to a physical host in each user account. The
sender and receiver need to create VMs on the same
host. The sender is able to influence the host state by
making the host full-load. The receiver is able to get
the bit by observing the result of creating a virtual

380
Li, C., Shen, Q., Chen, K., Yang, Y. and Wu, Z.
Whispers in the Cloud - A Covert Channel using the Result of Creating a Virtual Machine.
DOI: 10.5220/0005739403800387
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 380-387
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

machine. We also design the synchronization process
to transmit the bit correctly. We implement the covert
channel in our own OpenStack environment. We do
many experiments in this environment. The results
show that we can transmit the information with the
100% accuracy when the bandwidth is 0.0167bps (bit
per second). We also discuss how to mitigate and
eliminate this channel.

Our contributions are as follows. (1) We present
a novel kind of user-level covert channel called
CCRCVM in cloud platforms. To the best of our
knowledge, this paper is the first cloud covert channel
to be used in user-level. (2) We analyse the theory of
CCRCVM and implement a prototype in OpenStack.
(3) We discuss the relationship between the
bandwidth and the accuracy, and give the way to
mitigate and eliminate this channel.

The remainder of this paper is organized as
follows. Section 2 describes the related work of the
covert channel. Section 3 describes the threat scenario
and communication theory. Section 4 describes the
implementation of CCRCVM. Section 5 evaluates the
bandwidth and accuracy. Section 6 discusses the
working conditions and countermeasures. Section 7
concludes this paper.

2 RELATED WORK

Covert channels in the cloud have been known for a
long time. Ristenpart et al. (Ristenpart et al., 2009)
first exposed cloud computing to covert channel
attacks. Authors introduced a technique based on the
CPU L2 cache. The L2 cache is utilized to store
recently accessed information between the L1 cache
and RAM memory. They had implemented a L2
cache covert channel in Amazon EC2. The bit rate
was just 0.2 bps. Despite its low bit rate of 0.2bps, this
covert channel shows deficiencies in the isolation of
virtual machines in Amazon EC2. The limitation of
this covert channel is that the sender and receiver
need to share the same core. Xu et al. (Xu et al., 2011)
refined the communication model of L2 Cache Covert
Channel and the channel arrived at considerably
higher bandwidth (3.20bps) in EC2. In (Okamura et
al., 2010), Okamura et al. designed and evaluated a
similar approach which utilized the load of a shared
CPU to encode secret data bits. The resulting
bandwidth was about 2 bps. This covert channel has
little practical applicability as it only works under the
assumption that both colluding cloud instances share
the same processor’s physical core. Except for covert
channels using CPU cache, there were some other
covert channels using other resources, such as core

alternation (Li et al., 2012), sharing memory etc. (Wu
et al., 2011) (Shen et al., 2013) (Wu et.al., 2014)

Compared to other cloud covert channels,
CCRCVM is used in user-level. As depicted in figure
1, the information flow 1 indicates the VM-level
cloud covert channel’s flow direction. The flow 2
indicates the user-level cloud covert channel’s flow
direction. The VM-level covert channel needs to use
the VMs to operate the shared resources such as CPU,
memory, core etc. Although the user-level covert
channel also needs to create VMs, it does not need to
run the VMs to operate the shared resources. The
user-level covert channel uses the cloud platform
managements such as VM create, VM delete and VM
migrate to construct the covert channel. The user-
level sender and receiver are cloud users rather than
virtual machines. Traditional cloud covert channels
use VMs as the sender and receiver.

Figure 1: The difference between VM-level and user-level
covert channel.

The shared resource that CCRCVM uses is the
result of creating a virtual machine which was not
mentioned before. The CCRCVM is a cloud user-
level covert channel, which means it does not need to
operate in virtual machines. This means the monitors
cannot find the communications using CCRCVM.
The traditional covert channel detections are not
effective for CCRCVM. Maybe the bandwidth of
CCRCVM is not satisfying, but there is still useful in
some conditions. When all traditional ways are
monitored in a cloud (Pitropakis et al., 2015), and the
malicious user needs to transmit a confident but small
amount of information such as the password or key,
we should use CCRCVM in this condition.

3 THE SPECIFICATIONS
OF CCRCVM

This covert channel can be used by two users in the
same IaaS (Infrastructure as a Service) cloud to

Whispers in the Cloud - A Covert Channel using the Result of Creating a Virtual Machine

381

communicate. An IaaS user requests to create a
virtual machine, and the result may be succeeded or
failed. Different creating results implicate different
information that gets from other users. For example,
in the OpenStack environment, users give a request to
create a virtual machine on a specified host. If the host
has enough resources, this request is satisfied, and the
virtual machine will be the Active status; if the host
doesn’t have enough resources, the virtual machine
will be the Error status. We can construct our covert
channel by this feature.

In this Section, we describe this covert channel in
detail, and describe the threat scenario. We also
describe the action that sender and receiver need to
do. The implementation of CCRCVM will be
described in Section 4.

3.1 Threat Scenario

In this section, we introduce the threat scenario of
CCRCVM.

Figure 2: Threat scenario.

As depicted in Figure 2, there are two roles in this
threat scenario. One is the sender. The other is the
receiver. They are in a common attack organization.
They can create VMs in the same IaaS cloud. They
cannot communicate in the real world, so they must
communicate by the virtual methods. Direct
communication is prohibited, and the sender cannot
transmit the information outside the cloud. Sender’s
network packets are monitored. We assume that the
sender gets some important information and the
sender needs a way to transmit the information
outside the cloud to the attack organization. We
assume that the cloud provider permits the user to
choose the host where the VMs run. The CCRCVM
works in this scenario. In reality, this scenario exists
in some cloud platforms, such as OpenStack.

3.2 Sender

This covert channel is based on the result of creating
a virtual machine. Sender is responsible for
influencing the host to send the bit. Figure 3 describes
the theory of CCRCVM. We assume the sender can
create VMs in a specified host. When the sender
sends different bits, the sender needs to behave
differently. The actions that sender needs to do are as
follows.

Figure 3: The theory of CCRCVM.

 As depicted in the step 2 of Figure 3, when the
sender wants to send bit 1, the sender needs to
make the host full-load. Then the host cannot
provide the service to create VMs. Sender needs
time to wait for the receiver to sense the full-
load. After waiting receiver, sender relieve the
full-load condition. The time that transmitting a
bit consumes is a cycle.

 When the sender sends bit 0, the cycle must
equal to the cycle of bit 1. In bit 0 cycle, sender
needs to do nothing. The host can provide
service to create VMs when sender do nothing.
The equal cycle between bit 0 and bit 1
guarantees that every cycle can be received
correctly.

3.3 Receiver

This covert channel is based on the result of creating
a virtual machine. Receiver is responsible for creating
a virtual machine to get the bit. Compared to sender,
receiver does not behave differently when it receives
different bits. The receiver just needs to create VMs
periodically. The actions that the receiver needs to do
are as follows.
 As depicted in the step 1 of Figure 3, before the

transmit cycle, receiver needs to create a base
instance which is a virtual machine to choose a
host to construct the covert channel. Receiver
should specify an attribute instance group when
create base instance. The instance group means
that when the VMs are in the same instance
group, they are in a same host.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

382

 As depicted in the step 3 of Figure 3, the
subsequent VMs are created in a same instance
group. Receiver can judge the bit by the result of
creating a virtual machine. The result success
means transmission of bit 0, and failure means
bit 1.

4 THE IMPLEMENTATION OF
CCRCVM

In this section, we describe the implementation of
CCRCVM and the communication protocol. There
are two key points in this implementation, and we will
describe these in section 4.1 and 4.2. The hardware
and software environments will be described in
Section 5.

4.1 Make the Host Full-load

The key to transmit bit using CCRCVM is how to
make a host full-load. When a host is full-load, the
scheduler cannot choose this host to create a virtual
machine. When a user wants to create a virtual
machine, the result must be the failure.

Figure 4: OpenStack schedule process.

How to make the host full-load is important. It has
a great influence on the result of CCRCVM. You can
create VMs on a specified host until it is full-load.
This is a feasible way, but this way is too slow to carry
out. In OpenStack environments, we found another
way to make a host full-load. This is an easy way to
make the host full-load but not the only way.

Nova-scheduler service is responsible for
choosing a host for a virtual machine in OpenStack.
As depicted in Figure 4, it describes the process of a
virtual machine create request in nova-scheduler. In

the first step, a user proposes a request which requests
to create a virtual machine or some VMs. In the
second step, according to the relationship of the
resource update timestamp in the database and the
resource update timestamp in local, scheduler can
decide whether update the resource list or not. At the
remainder of this paper, we call the resource update
timestamp in database the database time and
timestamp in local the local time. If local time is not
more than database time, it represents the resource list
that stores in local is not the newest. Scheduler should
get the resource list from the database. On the
contrary, if local time is more than database time, it
reveals the resource list in local is latest. The resource
list in local is reliable, and scheduler can schedule by
referring it. In the step 3, scheduler choose the right
resource list to schedule a host. In step 4 and step 5,
database and local update their time respectively.
There is a difference between them. Only when the
request is satisfied, the database time is updated.
However, the local time is updated even if the request
is not satisfied. In step 6, scheduler returns the
location of every VMs or returns the failure
information. Users can create more than one VMs in
a create request. In the same request, scheduler
schedule the VMs sequentially. So when scheduler
finishes scheduling a virtual machine, it needs to
consume the resource in local. Until all the VMs are
scheduled successfully, the resource in the host will
be allocated and the database will be updated.

Figure 5: Make the host full-load in OpenStack.

In this paper, the way to make the host full-load is
based on the defect of OpenStack. We can find this
from the OpenStack source code. The Figure 5
describe this process. When the remaining resources
are not enough to satisfy an overload request, the
resource list in database is not updated. But the local
resource list is updated, and the local time is updated
too. This will lead to a vicious circle. When the user
sends a create request next time, the local time is more
than database time, so scheduler believe the local
resource list is latest, and it does not update the local
resource list. The database time will not be updated
unless the resource in host will be changed (VMs
delete action). Because of this, the database time is
still less than local time, and the local resource is still

Whispers in the Cloud - A Covert Channel using the Result of Creating a Virtual Machine

383

full-load. The following create request will not be
satisfied. In short, we can send a request contains
overload VMs to make the host still full-load.

4.2 Make the VMs on the Same Host

The other key point is how to create the virtual
machine on a specified host. We use an attribute
called server-group when we create VMs in
OpenStack (like this command, nova boot –server-
group=group_id). The VMs with the same server-
group will be created on the same host. Through
server-group, receiver should create a base instance
to bind the server-group to a host. Then, receiver
creates VMs with the same server-group will be
created in the same host which has created the base
instance. In this implementation, sender is an
OpenStack user who can use the availability-zone
attribute when he creates a virtual machine. The user
can assign a virtual machine on a specified host using
availability-zone attribute. Who can use the
availability-zone attribute is depended on the
configuration by the platform. Sender should get the
location of sender’s base instance, and the sender can
create an instance with the same host with receiver
base instance. Finally, sender should create overload
VMs on the same host by server-group.

4.3 Communication Protocol

In this section, we describe the protocol of
CCRCVM. Sender and receiver need to synchronize
before transmit the bit. The communication protocol
consists of two phases: the synchronization phase,
and the bit transmission phase.

As depicted in Figure 6, it describes the
communication protocol of CCRCVM. Receiver gets
the bit by the result of creating a VM. However,
receiver will get the bit 0 when the sender does not
transmit the bit in reality. Therefore we need a symbol
to represent the start of the transmission. In our
communication protocol, the synchronization phase
consists of 3 cycles. If the receiver gets the bit 101 in
3 cycles, we believe the sender is ready to transmit
and the bit transmission phase starts.
In bit transmission phase, we define the time that
transmitting a bit consumes a cycle. In a cycle, sender
and receiver need to do their specified work to
transmit the bit. In the first half cycle, Sender needs
to change the host state to transmit bit. At the same
time, receiver keeps the sleep state. In the second half
cycle, sender changes into the sleep state, and
receiver captures the bit by creating a virtual machine.
Before the transmission phase, receiver needs to

create a base instance to bind the server-group to a
host.

Figure 6: Communication Protocol of CCRCVM.

In a bit cycle, receiver creates a bit instance which
has the same server-group with the base instance.
Then receiver sleeps 5 seconds to wait for the request
to finish. Subsequently, receiver gets the result of bit
instance. According to the result, receiver can judge
the bit is 1 or 0. Finally, receiver deletes the bit
instance and sleeps 50s to wait for the next cycle.
Receiver repeat these in every bit cycle.

Sender behaves differently when transmitting
different bits. If sender transmits bit 1, sender needs
to do the following actions. First, sender needs to
create a sender base instance on the same host with
the receiver base instance and bind a sender server-
group. Then sender sleeps 5 seconds to wait for the
request to finish. Next sender create overload VMs
with the same server-group with sender base
instance. After that, sender enters sleep to give the
receiver enough time to get the bit. Finally, sender
deletes the base instance and overload instances to
relieve the full-load and enter the next cycle. If the
sender wants to send bit 0, sender just sleeps a cycle
time. In our experiment, the cycle is 60 seconds, and
the bandwidth is 0.0167bps.

5 EVALUATION

In this paper, we focus on the existence of the
CCRCVM, for this reason, we construct the
CCRCVM in a simple environment. This does not
influence the existence of the CCRCVM. As long as
the sender and receiver satisfy the condition
mentioned before, the CCRCVM will exist in a
complex environment.
We implemented a CCRCVM prototype on a Lenovo
v2000 notebook which has Intel i7-4510U running at
2.00GHz and 8GB RAM. Whole system runs on
Windows 8. We run VMware Workstation on this
windows host, and create 4 VMs with 2 cores and

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

384

2GB RAM. The VMs’ operating system is Ubuntu
14.04. We build an OpenStack environment whose
version is Juno on the 4 VMware VMs. Our
OpenStack environment consists of 1 controller node,
1 network node, and 2 compute nodes. We installed
the Keystone, Horizon, Glance and Nova component
except nova-compute in Controller node. The
controller node is responsible for controlling the
system. The Neutron component was installed on the
network node. As the name suggests, the network
node manages the network of OpenStack. The
environment includes 2 compute nodes that were
installed nova-compute service. The compute node
was the key to create VMs. Only the compute node
can provide VMs to users. In aforementioned
environment, we used OpenStack users as sender and
normal user as receiver.

Figure 7: Accuracy of Communication.

In this section, we discuss the relationship
between the bandwidth and the accuracy of
CCRCVM. These experiments are based on the
implementation on section 4. We transmit 50 bits
information in one experiment (because the
experiment consumes too much time. We choose 50
bits). We choose the bit cycle and we observe the
accuracy of transmitting. For every bit cycle, we do
the experiments 3 times in every cycle. We conclude
the relationship between bandwidth and accuracy.

The results of our experiment are shown in Figure
7, when the bit cycle is 60 seconds, the accuracy of
the covert channel is 100%. With the increasing of the
bit cycle, the accuracy is increasing. The minimum
cycle of the covert channel is 40s, and the accuracy is
20%.

The bandwidth of CCRCVM is not so high in our
experiments, but it is possible to be improved in the
future. We can use the Markov model for bandwidth
computation proposed by Tsai (Tsai et al., 1988) to
evaluate the ideal bandwidth of CCRCVM.

B=b*(Tr+Ts+2Tcs)-1 (1)

The formula 1 is the way to evaluate the ideal
bandwidth. The b is code factor, and it is usually 1.
The Tr is the time that reading the bit 1 or 0 consumes,
and the Ts is the time that setting the bit 1 or 0
consumes. The Tcs is the time that configuring the
transmit environment consumes. In CCRCVM, Tr, Ts
and Tcs are depended on the execute time of creating
virtual machines. If the environment is good enough,
Tr Ts and Tcs are possible to be the millisecond level.
Therefore, the bandwidth of CCRCVM is possible to
be more than 100bps.

6 DISCUSSION

In this section, we discuss the factors influencing the
bandwidth of CCRCVM, the influence of other users
and the elimination of CCRCVM.

In our environment, when the accuracy is 100%,
the bandwidth is only 0.0167bps. The reason for that
is as follows. First, regardless of the sender or the
receiver, when we input the creating command, the
command needs time to execute. This time is usually
1-2s in our environment. Second, when the command
is finished, we need to give some time to compute
node to launch the virtual machine. That is the reason
why we sleep after inputting the creating command.
Third, when the sender wants to transmit bit 1, it
should make the host full-load. The full-load status
should keep a period time, which makes an extra time
overhead. The first two reasons are about the
execution effect. So when we use CCRCVM in a
better environment, the bandwidth must be larger.
The third reason is an effect problem actually. If the
sender can make the host full-load faster and the
receiver gets the bit faster, the time to remain must be
slower. The bandwidth must be larger.

Because the scheduler service for the request in
order, other requests cannot influence the CCRCVM.
When CCRCVM is running，any user cannot get the
timely schedule service. Thus, the faster the
CCRCVM run, the more difficult the CCRCVM will
be found.

There are two key points in CCRCVM. One is
how to make the host full-load, and the other is how
to make the virtual machines on the same host. We
can propose the elimination from these two points.
For full load, we can restrict the number of virtual
machines that can be created on the same host to
eliminate the CCRCVM. For the location of VMs, we
can forbid the choice to create a virtual machine on a
specified host regardless admin user or the normal
user. However, these two ways are not easy to
eliminate the covert channel.

Whispers in the Cloud - A Covert Channel using the Result of Creating a Virtual Machine

385

The tradeoff between the VMs threshold given to
the user and the elimination of this covert channel is
significant. If the platform makes a threshold too
small, the users cannot create enough virtual
machines to complete their tasks. However, if the
threshold is not small enough, the CCRCVM cannot
be eliminated. For example, the sender can choose a
kind of virtual machine which occupies a large
amount of resources. The sender just create a few
VMs (less than the threshold) and can make the host
full-load. The sender VMs threshold is not worked in
this condition.

If the cloud platform prohibits the capability that
a user can choose the location of a virtual machine
absolutely. The management of the cloud platform
will be not flexible. For example, a safety sensitive
client needs a complete isolation environment,
because of no privileged user, the request cannot be
satisfied. However, once a user is authorized to
choose the host. The threat of CCRCVM will appear,
because every user is not be guaranteed safety. In
reality, OpenStack permits the user to choose the
host.

7 CONCLUSIONS

In this paper, first, we propose a new covert channel
CCRCVM which can make two users to
communicate in IaaS cloud. Next we describe the
threat of CCRCVM and the theory of the sender and
receiver. We implement a prototype of CCRCVM in
OpenStack environment. We communicate
successfully between two OpenStack users by
CCRCVM. In our prototype. We do many
experiments. The results show that the accuracy is
100% when the bit cycle is 60s. In this situation, the
bandwidth is 0.0167bps.

In this paper, we present CCRCVM, an user-level
covert channel. We believe some other user-level
covert channels should exist, such as using the result
of VMs migration to construct the covert channel. In
future, we will continue to do the research of these
user-level covert channels.

ACKNOWLEDGEMENTS

This work is supported by the National High
Technology Research and Development Program
(“863” Program) of China under Grant No.
2015AA016009, the National Natural Science
Foundation of China under Grant No. 61232005, and

the Science and Technology Program of Shen Zhen,
China under Grant No. JSGG20140516162852628.

REFERENCES

Alarifi, S. S., & Wolthusen, S. D. (2012, December).
Detecting anomalies in IaaS environments through
virtual machine host system call analysis. In Internet
Technology And Secured Transactions, 2012
International Conference for (pp. 211-218). IEEE.

Bijon, K., Krishnan, R., & Sandhu, R. (2015, June).
Mitigating Multi-Tenancy Risks in IaaS Cloud Through
Constraints-Driven Virtual Resource Scheduling. In
Proceedings of the 20th ACM Symposium on Access
Control Models and Technologies (pp. 63-74). ACM.

Han, Y., Chan, J., Alpcan, T., & Leckie, C. (2014, June).
Virtual machine allocation policies against co-resident
attacks in cloud computing. In Communications (ICC),
2014 IEEE International Conference on (pp. 786-792).
IEEE.

Jaeger, T., Sailer, R., & Sreenivasan, Y. (2007, June).
Managing the risk of covert information flows in virtual
machine systems. In Proceedings of the 12th ACM
symposium on Access control models and technologies
(pp. 81-90). ACM.

Lampson, B. W. (1973). A note on the confinement
problem. Communications of the ACM, 16(10), 613-
615.

Li, Y., Shen, Q., Zhang, C., Sun, P., Chen, Y., & Qing, S.
(2012, March). A covert channel using core alternation.
In Advanced Information Networking and Applications
Workshops (WAINA), 2012 26th International
Conference on (pp. 324-328). IEEE.

Meade, F. G. G. (1993). A guide to understanding covert
channel analysis of trusted systems. NCSC4TG4030
National computer security center, Maryland
university.

Okamura, K., & Oyama, Y. (2010, March). Load-based
covert channels between Xen virtual machines. In
Proceedings of the 2010 ACM Symposium on Applied
Computing (pp. 173-180). ACM.

Percival, C. (2005). Cache missing for fun and profit.
Pitropakis, N., Lambrinoudakis, C., & Geneiatakis, D.

(2015). Till All Are One: Towards a Unified Cloud
IDS. In Trust, Privacy and Security in Digital Business
(pp. 136-149). Springer International Publishing.

Reuben, J. S. (2007). A survey on virtual machine security.
Helsinki University of Technology, 2, 36.

Ristenpart, T., Tromer, E., Shacham, H., & Savage, S.
(2009, November). Hey, you, get off of my cloud:
exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM conference on
Computer and communications security (pp. 199-212).
ACM.

Shah, G., Molina, A., & Blaze, M. (2006, July). Keyboards
and Covert Channels. In USENIX Security.

Shen, Q., Wan, M., Zhang, Z., Zhang, Z., Qing, S., & Wu,
Z. (2013). A covert channel using event channel state

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

386

on xen hypervisor. In Information and Communications
Security (pp. 125-134). Springer International
Publishing.

Tsai, C. R., & Gligor, V. D. (1988, April). A bandwidth
computation model for covert storage channels and its
applications. In Security and Privacy, 1988.
Proceedings., 1988 IEEE Symposium on (pp. 108-121).
IEEE.

Varadarajan, V., Zhang, Y., Ristenpart, T., & Swift, M.
(2015, August). A placement vulnerability study in
multi-tenant public clouds. In 24th USENIX Security
Symposium (USENIX Security 15)(Washington, DC
(pp. 913-928).

Vleck, T. V. (1990). Timing channels. Poster session. In
IEEE TCSP conference.

Wu, J., Ding, L., Wang, Y., & Han, W. (2011, July).
Identification and evaluation of sharing memory covert
timing channel in Xen virtual machines. In Cloud
Computing (CLOUD), 2011 IEEE International
Conference on (pp. 283-291). IEEE.

Wu, Z., Xu, Z., & Wang, H. (2014). Whispers in the hyper-
space: high-bandwidth and reliable covert channel
attacks inside the cloud.

Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., &
Schlichting, R. (2011, October). An exploration of L2
cache covert channels in virtualized environments. In
Proceedings of the 3rd ACM workshop on Cloud
computing security workshop (pp. 29-40). ACM.

Whispers in the Cloud - A Covert Channel using the Result of Creating a Virtual Machine

387

