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Abstract: An interbank market network model based on bank credit lending preference is built in this paper to explain 
the formation mechanism of interbank market network structure. As well, we analyze the impact of credit 
lending risk preference on network topology structure, which includes degree distribution, network 
clustering coefficient, average shortest path length and network efficiency. Simulation results demonstrate 
that the accumulation degree follows dual power law distribution with credit lending risk preference 
parameter value equal or greater than 1, while the accumulation degree follows power law distribution with 
credit lending risk preference parameter value smaller than 1. The interbank market network shows small 
world topology property. With the increasing of bank credit lending risk preference, the average shortest 
path length decreases but network efficiency improves, which enhances the stability of the network. 

1 INTRODUCTION 

In the banking system, complex network 
relationships are formed through interbank lending, 
payment and settlement, discount and guarantee. 
The interbank market allows liquidity exchanges 
among financial institutions through facilitating the 
allocation of the liquidity surplus to illiquid banks, 
but also provide channel for risk contagion, which 
might trigger a domino effect. The subprime crisis 
broke out in the US financial market in August 
2007, which quickly evolved into global financial 
crisis, resulting in a large number of bank failures 
and great damaged to the stability of the financial 
system. 

Complex network theory is an important tool for 
complex systems modelling, and has been applied to 
statistical physics, life sciences, social sciences and 
many other fields. Random network (Burda et al., 
2004), small-world networks (Watts and Strogatz, 
1998; Newman and Watts, 1999) and scale-free 
networks (Barabási and Albert, 1999) are common 
complex network topologies. In the economic 
system, the complex network theory has been used 
for modelling in the fields of e-commerce (Reichardt 
and Bornholdt, 2005), network transactions 
(Garlaschelli and Loffredo, 2004), the stock market 
(Boginski et al., 2005; Bonanno et al., 2004; Huang 
et al., 2009) and other areas of modelling. The 

interbank market exhibits high degree of complexity, 
with different network structures, such as money 
centre structure (Freixas et al., 2000), complete 
market and incomplete market (Allen and Gale, 
2000), etc.  

There have been lager number of empirical 
research literature on interbank market network 
structure topology, such as degree distribution, 
average path length of the network, clustering 
coefficient, etc. Souma et al. (2003) modelled 
Japanese business network and found scale-free 
property through empirical results. Boss  et al. (2004) 
analyzed Austrian interbank market and found that 
the degree distributions followed power law 
distribution, interbank liability network showed a 
community structure, a low clustering coefficient 
and a short average path length. Iori et al. (2008) 
found the structure of Italian interbank market was 
fairly random and changed with time. Iori et al. 
(2007) showed that the Italian interbank consists of 
two communities, one mainly composed by large 
and foreign banks, the other composed by small 
banks. Cajueiro and Tabak (2008) found that the 
Brazilian interbank network structure had a weak 
community structure and high heterogeneity. Tabak 
et al. (2009) built Brazilian interbank market with 
minimum spanning tree  method and showed that the 
private and foreign banks tended to form clusters 
within the network and that banks with different 
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sizes were also strongly connected and tended to 
form clusters. 

In recent years, researchers began to explore the 
interbank market network structure formation 
mechanism. Inaoka et al. (2004) presented a 
procedure to extract a network structure described 
by a power-law degree distribution from a set of 
records of transactions. Li et al. (2010) introduced a 
network model of an interbank market based on 
interbank credit lending relationships and found 
some typical structural features such as  a low 
clustering coefficient and a relatively short average 
path length, community structures, and a two-power-
law distribution of out-degree and in-degree. 

In summary, the present simulation methods for  
constructing an interbank market can be divided into 
the following categories: (1) Establishing an 
interbank market network by setting a fixed link 
probability; (2) By setting a linking threshold, credit 
links are created if the given threshold is exceeded; 
(3) By assuming that the interbank network of a 
particular network architecture (such as scale-free 
networks, dual power rate networks, small-world 
networks, etc.). From the above analysis, we can see 
that the current model construction methods have 
not taken bank behaviours such as assets and 
liabilities into consideration. But empirical results 
demonstrate that the formation of credit lending 
links between banks is related to the banks 
behaviours. Banks with different credit lending 
scales are strongly connected and tend to form 
clusters (Tabak et al., 2009). In this paper, an 
interbank credit lending network model is 
constructed through designing a probability 
associated with bank lending scale and risk 
preference. Then, we analyze the topology property 
of network and the influence of risk preference on 
network structure. 

The remainder of this paper is organized as 
followed. The model is presented in part 2, 
simulation analysis is shown in part 3, and finally 
conclusions are conducted in part 4. 

2 THE MODEL  

In this paper, a directed graph ),( EVG  is used to 

denote interbank market network, where the vertex 
set V represents the set of all banks and the set E  is 
a collection of edges which represent the interbank 
credit lending relationships. A directed edge 

jie , exists between nodes Vji , , if and only if 

bank i  is the creditor bank of bank j . Assuming 

that the total bank number NV || , and iN denotes 

the set composed by neighbours of bank i . l  
represents the total interbank lending scales, and il  

is the lending scale of bank i , satisfying  ill . 

Based on the empirical results (Boss et al., 
2004), it is assumed that bank credit lending scale 
follows power-law distribution: llP ~)( , where   

is power law parameters. So, the interbank market 
network we build is composed by a large number of 
small banks and a few large banks. The specific 
process to construct the interbank market network is 
listed as follows:  
1) Initialization: Generating the total number of 

N  banks and lending scales followed by 
power-law distribution. 

2) The construction process of interbank credit 
lending relationships: The connection 
probability ijp  of  bank i )1( Ni   and bank j 

),1( ijNj   depends on their lending 

scales: ))2//(exp(1  ijjiij llllp  , 

where  denotes bank credit lending risk 
preference coefficient, where ),0[  . 

The interbank relationship connection probability 
]1,0())2//(exp(1  ijjiij llllp  , as the 

inequality 2//2//  ijjiijji llllllll
 
and 

0 . The probability gets the minimum when 

ji ll   and gets the maximum when ji ll  or 

ji ll  . Obviously, the connection probability ijp  

increases monotonically with parameter  . 

3 SIMULATION RESULTS  

In this paper, the parameters are initialized as 
follows: The total bank number 200N , the 
power-law parameter 87.1  (Boss et al., 2004), 
and the bank credit risk preference coefficient 

01.0 ， 1.0 ， 1 ， 10  and 100 , 
respectively. 

The interbank market structure calculated by the 
model with 01.0 is given in Figure 1, in which 
nodes denote banks and edges represents credit 
lending links between banks. It can be found from 
figure 1 that the banks which have large credit 
lending scales get bigger degree than those with 
small ones. This is because the number of banks 
with large credit lending scales is much smaller than 
those with small ones and the credit lending scales 

ICORES 2016 - 5th International Conference on Operations Research and Enterprise Systems

158



of banks are generated by power-law distribution. 
From the model, it can be known that banks with 
different credit lending scales establish connections 
more easily than those with the similar ones. So big 
banks show large degree and small banks get small 
degree. 

 

Figure 1: An interbank market network structure. 

3.1 Degree Distribution 

In this paper, we let id , in
id , out

id denote the degree, 

in-degree and out-degree of bank i  respectively, 
out
i

in
ii ddd  . The degree distribution )(kp  is 

defined as the proportion of the nodes with degree 
equals k  in the network. Cumulative distribution 





kk

cum kpkP
'

)()( ' , represents he proportion of the 

nodes with degree no less than k  in the network. 
Figure 2-1 to figure 2-5 is the simulation results of 
cumulative distribution with bank credit lending 
parameter 01.0  , 0.1, 1, 10, 100, respectively. 

It can been found from figure 2-1 to figure 2-5 
that the cumulative distribution of the constructed 
interbank network follows power-law distribution 
with 1 , but the cumulative distribution obeys to 
dual power-law distribution with 1 , which 
demonstrate that few number big banks which have 
large credit lending scales own the majority 
interbank credit lending business while the large 
number small banks with small credit lending scales 
have the minority interbank credit lending business. 
With the increment of credit lending risk preference, 
the maximum of in-degree and out-degree improves 
simultaneously. The dual power-law distribution 
obeyed by cumulative distribution through 
simulation experiments are consistent with the 
empirical findings in Austria and Japanese interbank 
(Boss et al., 2004; Souma et al., 2003) when 1 . 
As well, with 1 , the power-law distribution of 
cumulative distribution is in accordance with 

Inaoka’s empirical results (Inaoka et al., 2004).  
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Figure 2-1: Cumulative distribution with 01.0 .  
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Figure 2-2: Cumulative distribution with 1.0 . 
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Figure 2-3: Cumulative distribution with 1 . 

3.2 Network Clustering Coefficient 

The clustering coefficient of a node is used to 
measure the connected probability of two 
neighbours  of  the node  in an undirected graph. The 
network  clustering  coefficient  is the average of the 
clustering coefficient of all nodes in the network. 
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Figure 2-4: Cumulative distribution with 10 . 
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Figure 2-5: Cumulative distribution with 100 . 

We let C  denote network clustering coefficient, and 

ic  represent the clustering coefficient of node i , 

thus 



N

i
ic

N
C

1

1
. From the definition of node 

clustering coefficient, we can get 
)1(

2




ii

i
i dd

E
c , 

where iE represents the number of connected edges 

between neighbours of node i . The directed graph 
should be transformed to be an undirected one 
before computing network clustering coefficient, 
since the clustering coefficient is defined in an 
undirected graph. Figure 3 shows logarithmic plot of 
network clustering coefficient relationship and bank 
credit lending risk preference.  

It can be known from figure 3 that the clustering 
coefficient of interbank credit lending market 
network monotonically increases with bank credit 
lending risk preference. The explanation for this is 
that the probability to build credit lending 
relationships improves with the increment of bank 
credit lending risk preference. From the definition of 
network clustering coefficient , it is easy to 

understand  that network clustering coefficient 
increases monotonously with the connection 
probability. 
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Figure 3: Relation between network clustering coefficient 
and  . 

3.3 Average Shortest Path Length 

The shortest path length between two nodes is used 
to measure the distance of the two nodes. The 
shortest path ijd  from node i  to node j  is defined 

as a simple path starting from node i , and sinking in 
node j , which has the shortest nodes number. The 

shortest path length ijd
 
from node i  to node j  is 

the edge number of the shortest path. Obviously, in 
an undirected graph, the shortest  path length ijd  

from node i  to node j  equals he shortest path 

length jid  from node j  to node i . The average 

path length of the network can be calculated as 





ji

ijG d
NN

L
)1(

1
. To simplify the  calculation 

of the average shortest path length of the network, 
the interbank market network is transformed into an 
undirected graph. The relationships between the 
average path length of the interbank market network 
and bank credit lending preference is shown in 
figure 4. 

From figure 4, it can be found that the 
constructed interbank market network is a small 
world network with average path length less than 2. 
The average path length decreases monotonously 
with bank credit lending preference coefficient, 
since the potential paths between any two nodes 
increase with the growth of credit links number in 
the network. The results of interbank markets 
network structure in Mexico, USA and the Great 
Britain (Martínez-Jaramillo et al., 2010; Soramäki et 
al., 2007; Becher et al., 2008) also shows small 
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world property, which are the same as the finding of 
this paper. 
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Figure 4: Relations between average path length and  . 

3.4 Network Efficiency 

Network efficiency is another approach to measure 
the capacity of a network, and can be computed by 





ji ij

G dNN
E

1

)1(

1
, where ijd is the shortest path 

length from node i  to node j . From the definition 

of network efficiency, we can conclude that network 
efficiency can apply not only to describe a 
connected graph but also represent a non-connected 
graph connections. Similarly as calculating the 
average shortest path length, the interbank market 
network should also be transformed into an 
undirected graph when computing network 
efficiency. Simulation results are shown in figure 5. 

It can be seen from figure 5 that network 
efficiency increase monotonously from 0.55 to 0.97 
with the increment of bank credit lending preference 
and network efficiency approaching to 1 when 

1 . The reason for this is that the connection 
probability increases with the improvement of bank 
credit lending preference, which results in more 
interbank linkages in the interbank network. Then, 
there will be more potential paths between any two 
nodes  as the addition of network edges and the 
shortest path length of them may be shorter in the 
meanwhile. 

4 CONCLUSIONS 

In   this   paper,   an   interbank   market  network   is 
constructed based on bank lending credit scales 
followed   by   power-law   distribution.   Simulation  
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Figure 5: Relations between network efficiency and  . 

experiments demonstrates that interbank credit 
lending market network has small world property 
and follows power-law distribution with bank credit 
lending risk preference parameter value smaller than 
1, while follows dual power-law distribution with 
the same parameter equal or greater than 1. With the 
increment  of bank credit lending preference, the 
average shortest path length decreases and network 
efficiency increases, which improves the capacity 
and stability of the network. 

The results of this paper have some policy 
guidance. On one hand, when liquidity shortage 
occurred in the interbank market, bank regulars can 
adopt positive policies to guide banks to increase 
credit lending risk preference for prospering 
interbank market. On the other hand, when interbank 
market exhibits excessive prosperity, bank 
regulators should strengthen the interbank market 
supervision, and guide banks to reduce risk 
preferences in order to prevent potential systemic 
risks. 
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