
Virtual Worlds on Demand?
Model-Driven Development of JavaScript-based Virtual World UI

Components for Mobile Apps

Matthias Stürner and Philipp Brune
Department of Information Management, University of Applied Sciences Neu-Ulm, D-89231 Neu-Ulm, Germany

Keywords: Model-Driven Software Development, Mobile UI, JavaScript, UML Modeling, Virtual Worlds, Computer
Games.

Abstract: Virtual worlds and avatar-based interactive computer games are a hype among consumers and researchers for
many years now. In recent years, such games on mobile devices also became increasingly important. However,
most virtual worlds require the use of proprietary clients and authoring environments and lack portability,
which limits their usefulness for targeting wider audiences like e.g. in consumer marketing or sales. Using
mobile devices and client-side web technologies like i.e. JavaScript in combination with a more automatic
generation of customer-specific virtual worlds could help to overcome these limitations. Here, model-driven
software development (MDD) provides a promising approach for automating the creation of user interface
(UI) components for games on mobile devices. Therefore, in this paper an approach is proposed for the
model-driven generation of UI components for virtual worlds using JavaScript and the upcoming Famo.us
framework. The feasibilty of the approach is evaluated by implementing a proof-of-concept scenario.

1 INTRODUCTION

Social virtual worlds and computer games in which
the player has to move an avatar character through a
3D oder semi-3D scenery form an important part of
the computer games domain and provide also an in-
teresting concept, i.e. for online markerting, sales or
product presentation applications. However, existing
social virtual worlds and game environments mostly
require proprietary client software and lack general
acceptance outside their respective user communities,
which limits the possibilities for commercial applica-
tions (Stangl et al., 2012). Using purpose-specific vir-
tual worlds based on open client technologies embed-
ded into company web sites or mobile apps publicly
available would be an alternative.

In recent years, web technologies like JavaScript
(JS), HTML5 and CSS3 turned web browsers into
universal runtime environments for creating portable
user interfaces (UI) of so-called Rich Internet Ap-
plications (RIA) or hybrid mobile or desktop apps.
These applications offer complex functionality, high
interactivity and appealing visual design. Thus, they
also form a promising basis for implementing the
described purpose-specific virtual worlds. However,
to be feasible in practice this would require an effi-
cient and highly automatic implementation of the vir-

tual world software components. Using model-driven
software development (MDD) to generate the neces-
sary interactive JavaScript UI components from Uni-
fied Modeling Language (UML) models describing
the corresponding game scenario on a logical level
is one possibility to address this challenge (Huber
and Brune, 2012). Therefore, in the present paper
an approach is presented for generating UI compo-
nents from a UML model representing a scenario in
which the user navigates a character through a vir-
tual setting. The model is created within the Eclipse
IDE using the Ecore framework. From this model
a code generator creates the JavaScript code of the
UI components using the upcoming Famo.us frame-
work1. The feasibility of the approach is evaluated by
implementing a proof-of-concept scenario.

The rest of this paper is organized as follows: In
section 2 the related work is analyzed in detail. Sec-
tion 3 describes the design of the proposed UML
model and section 4 the implementation of the code
generator and its JavaScript library. The proof-of-
concept implementation and the evalutaion results are
presented in section 5. We conclude with a summary
of our findings.

1http://famous.org

648
Stürner, M. and Brune, P.
Virtual Worlds on Demand? Model-Driven Development of JavaScript-based Virtual World UI Components for Mobile Apps.
DOI: 10.5220/0005726906480655
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 648-655
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 RELATED WORK

When it comes to MDD of web applications and espe-
cially RIA, several approaches have been proposed in
recent years that try to bring the paradigm of MDD
into the world of web engineering and highly in-
tearctive user interfaces (Pleuss et al., 2011; Sauer,
2011). One is UWE (UML-based Web Engineer-
ing) (Kraus et al., 2007; Kraus, 2007). For gener-
ating the UI, UWE contains a presentation model in
which the basic layout and functional structure of the
UI can be modeled using abstract elements, for ex-
ample buttons or text input fields. These elements
must then be mapped to concrete UI components
of the target platform. Also its application to spe-
cific web development platforms like UWE4JSF us-
ing Java ServerFaces (JSF) (Kroiss et al., 2009; Kroiß,
2008) or ASP.NET (Barabás and Kakucs, 2014) has
been demonstrated. (Koch et al., 2009) uses UML
state machines in order to describe patterns for the in-
teraction of UI components triggered by user or sys-
tem events, like e.g. onfocus or mouseover. These
patterns can be integrated into models of all UML-
based web methodologies. As a proof-of concept,
they choosed UWE and extended the presentation
layer meta-model to add the patterns to UI compo-
nents using meta-attributes. However, these patterns
only cover the interaction with the UI and not the
components themselves. Moreover, the RIA patterns
are not generated automatically but have to be trans-
lated into code manually.

A different approach extends the WebML stan-
dard2 for modeling RIA (Bozzon et al., 2006a; Boz-
zon et al., 2006b). It focuses in particular on the dis-
tribution of functionality and data between the server
and the client as well as on the data model and busi-
ness logic. Regarding the UI, only the structure of the
page can be modeled, but not single UI components.

With WebRatio a WebML based tool exists
(Brambilla and Fraternali, 2014), which is also avail-
able as a commercial product. It was first introduced
in 2001. Since then the tool, as well as the underlying
modeling language, have been under further develop-
ment. Nonetheless, WebRatio also focuses on data
models and business logic and lacks capabilities of
modeling UI components.

(Brambilla et al., 2014) describes an extension to
the Interaction Flow Modeling Language3 (IFML) for
MDD of mobile applications based on HTML5, CSS
and JS, optimized for the Apache Cordova Frame-
work. IFML was developed by WebRatio and is in-
spired by their experience of WebML and the WebRa-

2www.webml.org
3www.ifml.org

tio tool. It has been adopted as a standard by the OMG
and can be used to model the structure and content of
web pages, as well as the users interaction for navi-
gating from one page to another. However, as stated
on the web site, “IFML does not cover the model-
ing of the presentation issues (e.g. layout, style and
look&feel) of an application front-end and does not
cater for the specification of bi-dimensional and tri-
dimensional computer based graphics, video games,
and other highly interactive applications.”4. (Linaje
et al., 2009) combines WebRatio for data models and
business logic with the RUX-Method (Linaje et al.,
2007b) for the presentation layer, which focuses more
on the graphical UI than WebML. (Linaje et al.,
2010) also uses this combination and additionally in-
tegrates context-awareness into both methods (e.g.
time-aware presentation, location-aware services). As
described in (Linaje et al., 2008), the RUX-Method
breaks down the UI into three interface levels: Ab-
stract, Concrete and Final Interfaces. Each level is
build using components specified in a components li-
brary. But also RUX is lacking the capability of mod-
eling the components themselves. It has also been
combined with UWE for data and business logic (Pre-
ciado et al., 2008). Other approaches focus on mi-
grating legacy web applications to RIA using WebML
(Rodriguez-Echeverra et al., 2010) and RUX (Linaje
et al., 2007a).

Many of the above approaches use templates or li-
braries in terms of UI generation and none of them
cover the model-driven development of the UI com-
ponents themselves. In contrast, (Huber and Brune,
2012) focuses on the MDD of interactive UI com-
ponents using the canvas element of the recently an-
nounced HTML5 standard. However, the used meta-
model is rather simplistic and uses relatively primitive
graphical elements. For developing more complex ap-
plications using MDD, a higher level abstractions is
required.

Since JS has taken such an important role in
web engineering, many frameworks and libraries have
been developed to simplify and speed up the develop-
ment of websites with JS. Most noteworthy jQuery5,
which offers a wide variety of features like DOM ma-
nipulation, event handling, animation, and in particu-
lar a very fast and easy way to embed AJAX (Asyn-
chronous JavaScript and XML) functionality. In ad-
dition to the standard jQuery library there exist jQery
UI and jQuery Mobile. While many jQuery widgets
are developed by third party users and therefore not
guaranteed to be maintained and developed any fur-

4www.ifml.org
5http://www.jquery.com/

Virtual Worlds on Demand? Model-Driven Development of JavaScript-based Virtual World UI Components for Mobile Apps

649



ther, the Dojo Toolkit6 offers similar functionality and
comes with a built-in subproject for UI widgets.

jQuery and Dojo have been evaluated along with
other JS frameworks regarding their quality of code
(complexity and maintainability), vulnerability, and
performance (Gizas et al., 2012) as well as with re-
spect to multimedia support (Rosales-Morales et al.,
2011).

Another framework offering great responsiveness
and therefore qualifying for the development of mo-
bile applications, is the Bootstrap7 framework. It was
developed by Twitter and is currently the most popu-
lar project on GitHub8. It’s built-in layout functional-
ity uses a twelve column grid, that adapts to the users
viewport. If the screen is too narrow, the columns be-
come fluid and are stacked vertically, in order to avoid
horizontal scrolling even on small screens.

Still in an early stage of development is the
Famo.us framework (Famo.us, 2014) with the distinc-
tive feature of a built in 3D layout engine and physics
animation engine, capable of rendering to DOM, Can-
vas, or WebGL. It can also be used for rendering in
applications, developed with the AngularJS9 frame-
work and will be integrated into the next generation
of jQuery widgets (Borins, 2015). Despite its superior
3D graphics capabilities, it has not been evaluated so
far with respect to its usage for developing interactive
graphical UI components.

As one can see, many approaches exist in the
scientific literature as well as in practice for MDD
of client-server web applications or for simplifying
JavaScript development by using frameworks. How-
ever, few results have been proposed for MDD of
JavaScript UI components using these frameworks. In
particular, MDD of highly interactive JavaScript com-
ponents for implementing virtual world scenarios has
not been studied so far. Therefore, in the following the
question is addressed how JavaScript UI components
representing virtual world scenarios could be realized
using MDD and the Famo.us framework.

3 DESIGN OF THE UML MODEL

The proposed UML class model describes a UI com-
ponent representing a semi-3D scenery consisting of
a boardgame-like “stage” (2D grid), which represents
the virtual world and on which objects are either fixed
to a position or could move across the fields. For
higher interaction, actions can be added to the objects
6http://dojotoolkit.org
7http://www.getbootstrap.com
8https://github.com/
9https://angularjs.org/

user for changing the object’s properties, e.g. anima-
tion speed, size, or opacity. Specific fields can also be
marked as an exit for redirecting the user to another
setting (i.e. a new scenery or game level).

Ecore serves as the modeling language. It is used
to define a model for the target domain, which is de-
signed using the Ecore Diagram Editor. The instance
models for the code generation are then created with
the EMF integrated editor. This editor offers a tree
based structure for modeling and automatically gen-
erates an XMI file representing the modeled instance.
Ecore was chosen as modeling language since it is
free, open-source, and can be used with the popular
Eclipse IDE. It also offers all the needed modeling
elements like classes, attributes, references and inher-
itance.

The proposed UML class model is shown in fig-
ure 1. Its structure is guided by the idea of repre-
senting a specific scenery (representing i.e. a room or
level of a virtual world) in a stage-like fashion by a
rectangular field made up of quadratic cells (like e.g.
on a chess board), each adressable by position (x,y)-
coordinates. The field represents the ‘’floor” of the
scenery. On this field, objects (representing charac-
ters, scenery items ec.) could be placed and moved
around.

The root element of the metamodel is the Appli-
cation class in the top left. An Application instance
represents a set of Field objects (representing levels
or sceneries). It does not have any attributes and only
serves as a container for the other elements. With-
out the Application class a new model instance would
have to be created for each field and the generator
would have to be executed for each resulting model
file. Therefore the Application class makes the de-
velopment process more efficient when creating more
than one field at once. An Application consists of one
or more fields.

The Field class is the main class of the model
and represents the ‘’floor” of the scenery, i.e. the
light blue, two-dimensional plain in figure 2. It has
a name attribute, which will later be the name of the
folder in which the generator puts the source code for
the field. The surfaceSize specifies the size of each
square on the field. The color attribute defines the
color and can be in hexadecimal (e.g. #AA00FF) or
rgb (e.g. rgb(176,0,255)) format. The next three at-
tributes, borderWidth, borderStyle, and borderColor,
determine the border of each square and have to be
formatted like CSS border values. tiltX, tiltY, and tiltZ
are used for tilting the field, to give it a three dimen-
sional effect. The last attribute of the field class is
called content and indicates the image that should be
used as a background for each square.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

650



Figure 1: Proposed UML class model describing the UI component for a virtual world scenario.

Each field uses a Map instance, which specifies
the size and shape of the field. The upper left corner
is position [0,0], from there on x increments to the
right and y downwards. The format of the attribute
positions has to be a string of 1s and 0s, separated by
commas. A 1 indicates that this position is part of the
field and a square will be drawn at this position. A 0,
on the other hand, indicates that this position should
be left out. The String will later be transformed to an
array. A field is always quadratic and its size is deter-
mined by taking the square root of that array. For ex-
ample the string "1,1,1, 1,0,1, 1,1,1" results in a 3×3
field with an empty space in the middle. If the num-
ber of provided positions is not quadratic, a smaller
quadratic field is created and the additional positions
are ignored. For example if the positions string con-
tains 17 values, a 4× 4 field is created and the last
positions is ignored.

With the Music class, a background music can be
added to a field. The attribute track represents the
name of the sound file and the boolean value playOn-
Start indicates if the music should play right away
upon display of the field. The file can be of any format
supported by the HTML5 <audio> element.

The Exit class is used to redirect the user to an-
other field, when he or she moves an object to the
position of the exit. PosX and posY specify the posi-
tion of the exit on the field. The string target defines
the name of the field to which the user should be redi-
rected.

The Object class represents objects on the field
(characters and other items). A field contains at least
one object and a maximum of one object per avail-
able position. Object is an abstract class and serves
as a parent for MovableObject and UnmovableOb-

ject, containing all their common attributes. posX and
posY indicate the initial position of the object on the
field. If the position doesn’t exist, or is already occu-
pied by another object, the object is ignored. The size
attribute determines its size and content the image that
serves as a visual representation on the field. rotateZ
and rotateY are used to rotate the object. These val-
ues are in radians, so the input of π for example, will
result in a rotation of 180 degrees. An object can also
be animated by specifying a rotationSpeed other than
0. This will result in an object continuously spinning
around its y-axis. A higher value results in a faster
animation.

The class UnmovableObject doesn’t require any
additional attributes. MovableObject on the other
hand contains a boolean value called hasDirection to
define whether the content of its image is looking in a
certain direction. If this is set to true, the image will
be turned around in the direction the object is moving.

A MovableObject is animated by a Transition.
The duration attribute determines the duration of the
animation and the curve attribute indicates a curve
from the Famo.us Easing class.

A listener pattern is used to implement the reac-
tions to the events triggered by movin onto certain
fields or interacting with other objects. The EventLis-
tener class was designed for adding reactions to cer-
tain events. Therefore, a reaction has to be imple-
mented in the function attribute and a trigger has to
specify when this function should be executed.

The Action class offers ways the user can inter-
act with the objects, besides moving them across the
field. It is an abstract class and has two relations. The
first relation implies that an action is performed by an
object. The second relates an action to a field. This

Virtual Worlds on Demand? Model-Driven Development of JavaScript-based Virtual World UI Components for Mobile Apps

651



second relation enables an action to be performed by
multiple objects. As a consequence, e.g. if three ob-
jects perform the same action, it only has to be mod-
eled once.

There are several predefined actions. SlowDown
increases the duration of an object’s transition and
therefore slowing down its movement. delta defines
the amount by which the duration is increased and
max specifies the maximum for the duration value.

Hurry implements the opposite effect. Other sim-
ilar actions are the Grow and Shrink actions, but in-
stead of altering the object’s movement they increase
or decrease its size.

The Talk action is used for taking a text input from
the user and displaying it in a rectangle next to the ob-
ject for as many milliseconds as supplied in the dura-
tion attribute.

For audiovisual interaction the PlaySound action
can be added to an object. When executed the file
defined in the file attribute will be played. Moreover,
the volume can be set to a value between 0 and 1.

Finally, the CustomAction class allows the devel-
oper to add manually written functions. Besides the
function itself, a name and a title for the action have
to be defined. The name attribute uniquely identifies
the action and the title specifies the action’s title. An
action can be combined with the EventListener to en-
able objects to interact among themselves.

4 MODEL TRANSFORMATION
AND CODE GENERATION

The generator, which transfers these models to exe-
cutable code, is implemented in Java, which was cho-
sen since the generator should be easily integratable
in the Eclipse IDE framework (written also in Java)
and the Java ecosystem provides well established li-
braries to support the necessary processing steps.

The generator makes use of the DocumentBuilder
class from the package javax.xml.parsers to create a
DOM object from the XMI file. The DOM object is
then parsed using the NodeList and Element classes
from the org.w3c.dom package. The result of the gen-
eration process is a JavaScript application which can
be viewed in a browser by opening a generated in-
dex.html file.

Sound files and images used by the modeled ap-
plication have to be copied either into the sounds re-
spectively graphics folder within the source folder in
advance or in respective folders of the target directory
after the generator has been executed.

The generated JavaScript code uses a cus-
tom JavaScript class library which encapsulates the

Famo.us functionality and provides classes corre-
sponding to the classes defined in the UML model as
far as necessary.

5 PROOF-OF-CONCEPT
IMPLEMENTATION

To demonstrate the feasibility of the proposed ap-
proach, a prototype virtual world scenario was mod-
eled and generated. The resulting JavaScript applica-
tion generated by the code generator is shown in the
screenshot in figure 2. To generate this scenario, first
an instance of the UML model of figure 1 was created
using the built-in Eclipse EMF editor. This editor au-
tomatically creates a XMI file and visualizes the con-
tent in a tree-like structure. Values for the attributes
of the currently selected element are entered using the
properties view in Eclipse. Additionally, the editor of-
fers live validation of the models and indicates miss-
ing attributes or elements immediately.

Figure 3 shows a screenshot of the tree-like
structure of the prototype instance model within the
Eclipse EMF editor. The first element to be added
for each application is a field, representing the scene.
For each field, a map is added to define the shape and
size of the field. For the prototype, the result will be
a field with 6× 6 positions, but only the three inner
positions of each row will be accessible. An exit to
another field is added at position [3,3]. Moreover, a
background music will start playing once the browser
has loaded the page containing the field.

The protoype field contains four objects. One
unmovable and three movable objects. The last ob-
ject also includes an event listener which is executed
whenever the user uses the talk function of another
object with the input "Hello Partner!". When mod-
eling event listeners, their parent object can be refer-
enced by the keyword thisObject. The generator will
automatically replace the keyword with a reference to
the parent object. If elements of a subclass are added,
the type is added as an attribute to distinguish between
the different subclasses. The actions of the element
are specified by two indexes. The first one indicates
in which field node of the application the action was
defined and the second one is the index of the action
itself inside of that field node. This means that it is
possible to use an action defined in one field for ob-
jects throughout the whole application.

The last step is to add the actions. For demon-
stration purposes a minimalistic custom action is also
part of the prototype model. Since the relationship be-
tween action and object is bi-directional in the model,
actions also have an attribute containing the objects

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

652



Figure 2: Screenshot of the prototype virtual world scenery generated from the modeled instance.

Figure 3: Tree-like representation of the model instance in the Eclipse EMF editor.

Virtual Worlds on Demand? Model-Driven Development of JavaScript-based Virtual World UI Components for Mobile Apps

653



that perform them.
To further evaluate the approach, the prototype

model was extended by a second field. To demon-
strate the interaction with the user, several movable
objects were added to the field. Moreover multiple ac-
tions are performed by the individual objects, letting
the user modify their appearance. For objects con-
taining the talk action, the user can enter text into the
input field in the top left, which is then displayed in
a dialogue box next to the selected object. An event
listener has been added to one of the objects, reply-
ing automatically if the user enters a certain text. The
field also includes a background music, which can be
played by clicking on the speaker icon in the top right
corner. Sound can also be played by objects, when
selecting the Play Sound entry in their action view.

The time needed for creating this field was sig-
nificantly lower compared to a manual implementa-
tion. It was also faster than copying the code of one
field and then altering it to design a new one. The
main reason for the reduced time effort is the much
higher abstractions that are used for development.
Additionally, the use of the tree-based Eclipse edi-
tor also increases the development speed, especially
when reusing actions for several objects. The live
model validation offers early error detection, so no
time is wasted with failed generator runs. However,
there are also some drawbacks in the development
process. The properties view of Eclipse, which is used
to enter the values for the attributes is not suited for
comprehensive inputs like i.e. long arrays or func-
tions. Moreover, the Ecore feature of automatically
setting default values and leaving out attributes in the
XMI file made the implementation of the generator
more challenging.

6 CONCLUSIONS

In conclusion, in this paper an approach for imple-
menting JavaScript UI components representing vir-
tual world scenarios using MDD was proposed. Using
the Ecore modeling language, a metamodel contain-
ing classes for modeling a semi-3D game-like envi-
ronment and the corresponding code generator were
developed. While using high abstractions for the
modeled classes, the EventListener and CustomAc-
tion classes also allow the developer to manually add
functionality.

The code generator was implemented in Java
for transforming model instances into executable JS
code. The underlying JS codebase was developed
with the upcoming Famo.us framework, offering so-
phisticated animations for the UI components.

The approach was evaluated by a proof-of-concept
implementation demonstrating its general feasibility,
revealing the advantages and disadvantages of the
Eclipse-based model editor. However, further re-
search is needed to evalaute the approach in more
complex scenarios and also in real-world case studies
and to analyze its integration with the business logic
tier and back-end systems.

REFERENCES

Barabás, L. and Kakucs, B. (2014). Model-driven devel-
opment of web applications. International Journal on
Recent Trends in Engineering & Technology, 10(1).

Borins, M. (2015). Famo.us partners with the jquery foun-
dation.

Bozzon, A., Comai, S., Fraternali, P., and Carughi, G. T.
(2006a). Capturing ria concepts in a web modeling
language. In Proceedings of the 15th International
Conference on World Wide Web, WWW ’06, pages
907–908, New York, NY, USA. ACM.

Bozzon, A., Comai, S., Fraternali, P., and Carughi, G. T.
(2006b). Conceptual modeling and code generation
for rich internet applications. In Proceedings of the 6th
International Conference on Web Engineering, ICWE
’06, pages 353–360, New York, NY, USA. ACM.

Brambilla, M. and Fraternali, P. (2014). Large-scale model-
driven engineering of web user interaction: The
webml and webratio experience. Science of Computer
Programming, 89:71–87.

Brambilla, M., Mauri, A., and Umuhoza, E. (2014). Ex-
tending the interaction flow modeling language (ifml)
for model driven development of mobile applications
front end. In Mobile Web Information Systems.

Famo.us (2014). Famo.us layout.
Gizas, A., Christodoulou, S., and Papatheodorou, T. (2012).

Comparative evaluation of javascript frameworks. In
Proceedings of the 21st International Conference
Companion on World Wide Web, WWW ’12 Compan-
ion, pages 513–514, New York, NY, USA. ACM.

Huber, M. and Brune, P. (2012). Model-driven development
of interactive web user interfaces with html5. Univer-
sity of Applied Sciences Neu-Ulm.

Koch, N., Pigerl, M., Zhang, G., and Morozova, T. (2009).
Patterns for the model-based development of rias. In
Gaedke, M., Grossniklaus, M., and Díaz, O., editors,
Web Engineering, volume 5648 of Lecture Notes in
Computer Science, pages 283–291. Springer Berlin
Heidelberg.

Kraus, A. (2007). Model driven software engineering for
web applications. PhD thesis, Ludwig-Maximilians-
Universität München.

Kraus, A., Knapp, A., and Koch, N. (2007). Model-driven
generation of web applications in uwe. MDWE, 261.

Kroiß, C. (2008). Modellbasierte generierung von
web-anwendungen mit uwe. Ludwig-Maximilians-
Universität München.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

654



Kroiss, C., Koch, N., and Knapp, A. (2009). Uwe4jsf:
A model-driven generation approach for web appli-
cations. In Gaedke, M., Grossniklaus, M., and Diaz,
O., editors, Web Engineering, volume 5648 of Lecture
Notes in Computer Science, pages 493–496. Springer
Berlin Heidelberg.

Linaje, M., Preciado, J., Morales-Chaparro, R., Rodriguez-
Echeverra, R., and Sánchez-Figueroa, F. (2009). Au-
tomatic generation of rias using rux-tool and webratio.
In Gaedke, M., Grossniklaus, M., and Díaz, O., edi-
tors, Web Engineering, volume 5648 of Lecture Notes
in Computer Science, pages 501–504. Springer Berlin
Heidelberg.

Linaje, M., Preciado, J., and Sanchez-Figueroa, F. (2007a).
Engineering rich internet application user interfaces
over legacy web models. Internet Computing, IEEE,
11(6):53–59.

Linaje, M., Preciado, J., and Sánchez-Figueroa, F. (2007b).
A method for model based design of rich internet ap-
plication interactive user interfaces. In Baresi, L., Fra-
ternali, P., and Houben, G.-J., editors, Web Engineer-
ing, volume 4607 of Lecture Notes in Computer Sci-
ence, pages 226–241. Springer Berlin Heidelberg.

Linaje, M., Preciado, J. C., Morales-Chaparro, R., and
Sanchez-Figueroa, F. (2008). On the implementation
of multiplatform ria user interface components. In
7Th International Workshop On Web-Oriented Soft-
ware Technologies–IWWOST, volume 8, pages 50–55.

Linaje, M., Preciado, J. C., and Sánchez-Figueroa, F.
(2010). Multi-device context-aware rias using a
model-driven approach. Journal of Universal Com-
puter Science, 16(15):2038–2059.

Pleuss, A., Gračanin, D., and Zhang, X. (2011). Model-
driven development of interactive and integrated 2d
and 3d user interfaces using mml. In Proceedings of
the 16th International Conference on 3D Web Tech-
nology, Web3D ’11, pages 89–92, New York, NY,
USA. ACM.

Preciado, J., Linaje, M., Morales-Chaparro, R., Sanchez-
Figueroa, F., Zhang, G., Kroiss, C., and Koch, N.
(2008). Designing rich internet applications combin-
ing uwe and rux-method. In Web Engineering, 2008.
ICWE ’08. Eighth International Conference on, pages
148–154.

Rodriguez-Echeverra, R., Conejero, J., Linaje, M., Pre-
ciado, J., and Sanchez-Figueroa, F. (2010). Re-
engineering legacy web applications into rich internet
applications. In Benatallah, B., Casati, F., Kappel, G.,
and Rossi, G., editors, Web Engineering, volume 6189
of Lecture Notes in Computer Science, pages 189–
203. Springer Berlin Heidelberg.

Rosales-Morales, V., Alor-Hernandez, G., and Juarez-
Martinez, U. (2011). An overview of multimedia sup-
port into javascript-based frameworks for developing
rias. In Electrical Communications and Computers
(CONIELECOMP), 2011 21st International Confer-
ence on, pages 66–70.

Sauer, S. (2011). Applying meta-modeling for the defi-
nition of model-driven development methods of ad-
vanced user interfaces. In Hussmann, H., Meixner, G.,
and Zuehlke, D., editors, Model-Driven Development

of Advanced User Interfaces, volume 340 of Studies
in Computational Intelligence, pages 67–86. Springer
Berlin Heidelberg.

Stangl, B., Kastner, M., and Polsterer, F. (2012). Social vir-
tual worlds’ success factors: Four studies’ insights for
the tourism supply and demand side. In System Sci-
ence (HICSS), 2012 45th Hawaii International Con-
ference on, pages 993–1002.

Virtual Worlds on Demand? Model-Driven Development of JavaScript-based Virtual World UI Components for Mobile Apps

655


