A New Parametric Description for Line Structures in 3D Medical Images by Means of a Weighted Integral Method

Hidetoshi Goto, Takumi Naito, Hidekata Hontani

Abstract

The authors propose a method that describes line structures in given 3D medical images by estimating the values of model parameters: A Gaussian function is employed as the model function and the values of the parameters are estimated by means of a weighted integral method, in which you can estimate the parameter values by solving a system of linear equations of parameters which are derived from differential equations that are satisfied by the Gaussian model function. Different from many other model-based methods for the description, the proposed method requires no parameter sweep and hence can estimate the parameter values efficiently. Once you estimate the parameter values, you can describe the location, the orientation and the scale of line structures in given 3D images. Experimental results with artificial 3D images and with clinical X-ray CT ones demonstrate the estimation performance of the proposed method.

References

  1. Ando, S. and Nara, T. (2009). An exact direct method of sinusoidal parameter estimation derived from finite Fourier integral of differential equation. IEEE Trans. Signal Process., 57(9):3317-3329.
  2. Chuang, G. C.-H. and Kuo, C.-C. (1996). Wavelet descriptor of planar curves: theory and applications. IEEE Trans. Image Process., 5(1):56-70.
  3. Cootes, T., Taylor, C., Cooper, D., and Graham, J. (1995). Active shape models - their training and application. Comput. Vis. Image Understanding, 61(1):38 - 59.
  4. Engan, K., Aase, S. O., and Ha°kon Husøy, J. (1999). Method of optimal directions for frame design. In Proc., IEEE Int'l Conf. Acoustics, Speech, and Signal Process., volume 5, pages 2443-2446.
  5. Freeman, W. T. and Adelson, E. H. (1991). The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell., 13(9):891-906.
  6. Goto, H. and Hontani, H. (2013). A weighted integral method for parametrically describing local image appearance. IPSJ Trans. Comput. Vis. Appl., 5:70-74.
  7. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. Int'l J. Comput. Vis., 1(4): 321-331.
  8. Kimia, B. B., Frankel, I., and Popescu, A.-M. (2003). Euler spiral for shape completion. Int'l J. Comput. Vis., 54(1-3):159-182.
  9. Lindeberg, T. (1994). Scale-Space Theory in Computer Vision. Kluwer Academic Publishers.
  10. Lindeberg, T. (1998). Edge detection and ridge detection with automatic scale selection. Int'l J. Comput. Vis., 30(2):117-156.
  11. Lowe, D. G. (1999). Object recognition from local scaleinvariant features. In Proc., IEEE Int'l Conf. Comput. Vis., volume 2, pages 1150-1157.
  12. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int'l J. Comput. Vis., 60(2):91- 110.
  13. Papari, G. and Petkov, N. (2011). Edge and line oriented contour detection: State of the art. Image Vis. Computing, 29(2-3):79 - 103.
  14. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., and Kikinis, R. (1998). Threedimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Anal., 2(2):143-168.
  15. Si, Z. and Zhu, S. (2012). Learning hybrid image templates (HIT) by information projection. IEEE Trans. Pattern Anal. Mach. Intell., 34(7):1354-1367.
  16. Starck, J.-L., Candès, E. J., and Donoho, D. L. (2002). The curvelet transform for image denoising. IEEE Trans. Image Process., 11(6):670-684.
  17. Tamrakar, A. and Kimia, B. B. (2007). No grouping left behind: From edges to curve fragments. In IEEE Int'l Conf. Comput. Vis., pages 1-8.
  18. Woiselle, A., Starck, J.-L., and Fadili, J. (2011). 3-D data denoising and inpainting with the low-redundancy fast curvelet transform. J. Math. Imaging Vis., 39(2):121- 139.
  19. Zhu, S., Shi, K., and Si, Z. (2010). Learning explicit and implicit visual manifolds by information projection. Pattern Recognition Letters, 31(8):667-685.
Download


Paper Citation


in Harvard Style

Goto H., Naito T. and Hontani H. (2016). A New Parametric Description for Line Structures in 3D Medical Images by Means of a Weighted Integral Method . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 208-217. DOI: 10.5220/0005726602080217


in Bibtex Style

@conference{visapp16,
author={Hidetoshi Goto and Takumi Naito and Hidekata Hontani},
title={A New Parametric Description for Line Structures in 3D Medical Images by Means of a Weighted Integral Method},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={208-217},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005726602080217},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)
TI - A New Parametric Description for Line Structures in 3D Medical Images by Means of a Weighted Integral Method
SN - 978-989-758-175-5
AU - Goto H.
AU - Naito T.
AU - Hontani H.
PY - 2016
SP - 208
EP - 217
DO - 10.5220/0005726602080217