A Robust Particle Filtering Approach with Spatially-dependent Template Selection for Medical Ultrasound Tracking Applications

Marco Carletti, Diego Dall'Alba, Marco Cristani, Paolo Fiorini

Abstract

Tracking moving organs captured by ultrasound imaging techniques is of fundamental importance in many applications, from image-guided radiotherapy to minimally invasive surgery. Due to operative constraints, tracking has to be carried out on-line, facing classic computer vision problems that are still unsolved in the community. One of them is the update of the template, which is necessary to avoid drifting phenomena in the case of template-based tracking. In this paper, we offer an innovative and robust solution to this problem, exploiting a simple yet important aspect which often holds in biomedical scenarios: in many cases, the target (a blood vessel, cyst or localized lesion) exists in a semi-static operative field, where the unique motion is due to organs that are subjected to quasi-periodic movements. This leads the target to occupy certain areas of the scene at some times, exhibiting particular visual layouts. Our solution exploits this scenario, and consists into a template-based particle filtering strategy equipped with a spatially-localized vocabulary, which in practice suggests the tracker the most suitable template to be used among a set of available ones, depending on the proposal distribution. Experiments have been performed on the MICCAI CLUST 2015 benchmark, reaching an accuracy (i.e. mean tracking error) of 1.11 mm and a precision of 1.53 mm. These results widely satisfy the clinical requirements imposed by image guided surgical procedure and show fostering future developments.

References

  1. Angelova, D. and Mihaylova, L. (2011). Contour segmentation in 2d ultrasound medical images with particle filtering. Machine Vision and Applications, 22(3):551- 561.
  2. Avidan, S. (2007). Ensemble tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(2):261-271.
  3. Barbosa, D., Bernard, O., Heyde, B., Dietenbeck, T., Houle, H., Friboulet, D., and D'hooge, J. (2012). B-spline explicit active tracking of surfaces (beats): Application to real-time 3d segmentation and tracking of the left ventricle in 3d echocardiography. In Ultrasonics Symposium (IUS), 2012 IEEE International, pages 224- 227. IEEE.
  4. Benz, T., Kowarschik, M., and Navab, N. (2014). Kernelbased tracking in ultrasound sequences of liver. Challenge on Liver Ultrasound Tracking CLUST 2014, page 21.
  5. Bouguet, J.-Y. (2001). Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corporation, 5:1-10.
  6. Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., and Van Gool, L. (2009). Robust tracking-bydetection using a detector confidence particle filter. In Computer Vision, 2009 IEEE 12th International Conference on, pages 1515-1522. IEEE.
  7. Cifor, A., Risser, L., Chung, D., Anderson, E. M., Schnabel, J., et al. (2012). Hybrid feature-based log-demons registration for tumour tracking in 2-d liver ultrasound images. In Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on, pages 724-727. IEEE.
  8. Cifor, A., Risser, L., Chung, D., Anderson, E. M., Schnabel, J., et al. (2013). Hybrid feature-based diffeomorphic registration for tumor tracking in 2-d liver ultrasound images. Medical Imaging, IEEE Transactions on, 32(9):1647-1656.
  9. DallAlba, D. and Fiorini, P. (2015). Bipco: ultrasound feature points based on phase congruency detector and binary pattern descriptor. International journal of computer assisted radiology and surgery, 10(6):843- 854.
  10. De Luca, V., Tschannen, M., Székely, G., and Tanner, C. (2013). A learning-based approach for fast and robust vessel tracking in long ultrasound sequences. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013 , pages 518-525. Springer.
  11. Dekel, S., Sochen, N., and Avidan, S. (2013). Incremental Level Set Tracking. Springer.
  12. Douglas, B. R., Charboneau, J. W., and Reading, C. C. (2001). Ultrasound-guided intervention: Expanding horizons. Radiologic Clinics of North America, 39(3):415 - 428.
  13. Farnebäck, G. (2003). Two-Frame Motion Estimation Based On Polynomial Expansion. In Image Analysis, pages 363-370. Springer.
  14. Frey, B. J. and Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814):972-976.
  15. Gautama, T. and Van Hulle, M. M. (2002). A phase-based approach to the estimation of the optical flow field using spatial filtering. Neural Networks, IEEE Transactions on, 13(5):1127-1136.
  16. Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):721-741.
  17. Guerrero, J., Salcudean, S. E., Mcewen, J., Masri, B., Nicolaou, S., et al. (2007). Real-time vessel segmentation and tracking for ultrasound imaging applications. Medical Imaging, IEEE Transactions on, 26(8):1079- 1090.
  18. Harris, E. J., Miller, N. R., Bamber, J. C., Symonds-Tayler, J. R. N., and Evans, P. M. (2010). Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4d ultrasound. Physics in medicine and biology, 55(12):3363.
  19. Holzer, S., Ilic, S., Tan, D., Pollefeys, M., and Navab, N. (2015). Efficient learning of linear predictors for template tracking. International Journal of Computer Vision, 111(1):12-28.
  20. Isard, M. and Blake, A. (1998). Condensationconditional density propagation for visual tracking. International journal of computer vision, 29(1):5-28.
  21. Kalal, Z., Mikolajczyk, K., and Matas, J. (2012). Trackinglearning-detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(7):1409-1422.
  22. Keall, P. J., Mageras, G. S., Balter, J. M., Emery, R. S., Forster, K. M., Jiang, S. B., Kapatoes, J. M., Low, D. A., Murphy, M. J., Murray, B. R., et al. (2006). The management of respiratory motion in radiation oncology report of aapm task group 76a). Medical physics, 33(10):3874-3900.
  23. Kondo, S. (2014). Liver ultrasound tracking using longterm and short-term template matching. Challenge on Liver Ultrasound Tracking CLUST 2014, page 13.
  24. König, L., Kipshagen, T., and Rühaak, J. (2014). A non-linear image registration scheme for real-time liver ultrasound tracking using normalized gradient fields. Challenge on Liver Ultrasound Tracking CLUST 2014, page 29.
  25. Kovesi, P. (2003). Phase congruency detects corners and edges. In The australian pattern recognition society conference: DICTA 2003.
  26. Lediju, M., Byram, B. C., Harris, E. J., Evans, P. M., Bamber, J. C., et al. (2010). 3d liver tracking using a matrix array: Implications for ultrasonic guidance of imrt.
  27. In Ultrasonics Symposium (IUS), 2010 IEEE, pages 1628-1631. IEEE.
  28. Liu, C. (2009). Beyond pixels: exploring new representations and applications for motion analysis. PhD thesis, Citeseer.
  29. Lubinski, M., Emelianov, S. Y., O'Donnell, M., et al. (1999). Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, 46(1):82-96.
  30. Lübke, D. and Grozea, C. (2014). High performance online motion tracking in abdominal ultrasound imaging. Challenge on Liver Ultrasound Tracking CLUST 2014.
  31. Matthews, I., Ishikawa, T., and Baker, S. (2004). The template update problem. IEEE Transactions on Pattern Analysis & Machine Intelligence, (6):810-815.
  32. Mei, X., Zhou, S. K., and Porikli, F. (2007). Probabilistic visual tracking via robust template matching and incremental subspace update. In Multimedia and Expo, 2007 IEEE International Conference on, pages 1818- 1821. IEEE.
  33. Mercier, L., Langø, T., Lindseth, F., and Collins, L. D. (2005). A review of calibration techniques for freehand 3-d ultrasound systems. Ultrasound in medicine & biology, 31(2):143-165.
  34. O'Shea, T., Bamber, J., and Harris, E. (2014). Liver feature motion estimation in long high frame rate 2d ultrasound sequences. Challenge on Liver Ultrasound Tracking CLUST 2014.
  35. Rattani, A., Freni, B., Marcialis, G. L., and Roli, F. (2009). Template update methods in adaptive biometric systems: a critical review. In Advances in Biometrics, pages 847-856. Springer.
  36. Rothlübbers, S., Schwaab, J., Jenne, J., and Günther, M. (2014). Miccai clust 2014: Bayesian real-time liver feature ultrasound tracking. Challenge on Liver Ultrasound Tracking. MICCAI, pages 45-52.
  37. Shirato, H., Shimizu, S., Kitamura, K., and Onimaru, R. (2007). Organ motion in image-guided radiotherapy: lessons from real-time tumor-tracking radiotherapy. International Journal of Clinical Oncology, 12(1):8- 16.
  38. Siegel, R. L., Miller, K. D., and Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1):5-29.
  39. Somphone, O., Allaire, S., Mory, B., and Dufour, C. (2014). Live feature tracking in ultrasound liver sequences with sparse demons. Challenge on Liver Ultrasound Tracking CLUST 2014, page 53.
  40. Thirion, J.-P. (1998). Image matching as a diffusion process: an analogy with maxwell's demons. Medical image analysis, 2(3):243-260.
  41. Tomasi, M., Barranco, F., Vanegas, M., Díaz, J., and Ros, E. (2010). Fine grain pipeline architecture for high performance phase-based optical flow computation. Journal of Systems Architecture, 56(11):577-587.
  42. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. Image Processing, IEEE Transactions on, 13(4):600-612.
  43. Wong, A. and Bishop, W. (2008). Efficient least squares fusion of mri and ct images using a phase congruency model. Pattern Recognition Letters, 29(3):173-180.
  44. Zhang, X., Günther, M., and Bongers, A. (2010). Real-time organ tracking in ultrasound imaging using active contours and conditional density propagation. In Medical Imaging and Augmented Reality, pages 286-294. Springer.
Download


Paper Citation


in Harvard Style

Carletti M., Dall'Alba D., Cristani M. and Fiorini P. (2016). A Robust Particle Filtering Approach with Spatially-dependent Template Selection for Medical Ultrasound Tracking Applications . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 522-531. DOI: 10.5220/0005725505220531


in Bibtex Style

@conference{visapp16,
author={Marco Carletti and Diego Dall'Alba and Marco Cristani and Paolo Fiorini},
title={A Robust Particle Filtering Approach with Spatially-dependent Template Selection for Medical Ultrasound Tracking Applications},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={522-531},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005725505220531},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - A Robust Particle Filtering Approach with Spatially-dependent Template Selection for Medical Ultrasound Tracking Applications
SN - 978-989-758-175-5
AU - Carletti M.
AU - Dall'Alba D.
AU - Cristani M.
AU - Fiorini P.
PY - 2016
SP - 522
EP - 531
DO - 10.5220/0005725505220531