Infinite 3D Modelling Volumes

E. Funk, A. Börner

Abstract

Modern research in mobile robotics proposes to combine localization and perception in order to recognize previously visited locations and thus to improve localization as well as the object recognition processes recursively. A crucial issue is to perform updates of the scene geometry when novel observations become available. The reason is that a practical application often requires a system to model large 3D environments at high resolution which exceeds the storage of the local memory. The underlying work presents an optimized volume data structure for infinite 3D environments which facilitates i) successive world model updates without the need to recompute the full dataset, ii) very fast in-memory data access scheme enabling the integration of high resolution 3D sensors in real-time, iii) efficient level-of-detail for visualization and coarse geometry updates. The technique is finally demonstrated on real world application scenarios which underpin the feasibility of the research outcomes.

References

  1. Andreasson, H., Bouguerra, A., Cirillo, M., Dimitrov, D., Driankov, D., Karlsson, L., Lilienthal, A., Pecora, F., Saarinen, J., Sherikov, A., and Stoyanov, T. (2015). Autonomous transport vehicles: Where we are and what is missing. Robotics Automation Magazine, IEEE, 22(1):64-75.
  2. Baert, J., Lagae, A., and Dutré, P. (2013). Out-of-core construction of sparse voxel octrees. In Proceedings of the 5th High-Performance Graphics Conference, HPG 7813, pages 27-32, New York, NY, USA. ACM.
  3. Baumbach, D. G. D. and Zuev, S. (2014). Stereo-VisionAided Inertial Navigation for Unknown Indoor and Outdoor Environments. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2014 . IEEE.
  4. Bekris, K., Shome, R., Krontiris, A., and Dobson, A. (2015). Cloud automation: Precomputing roadmaps for flexible manipulation. Robotics Automation Magazine, IEEE, 22(2):41-50.
  5. Chajdas, M. G., Reitinger, M., and Westermann, R. (2014). Scalable rendering for very large meshes. WSCG 2014, International Conference on Computer Graphics.
  6. Curless, B. and Levoy, M. (1996). A volumetric method for building complex models from range images. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, SIGGRAPH 7896, pages 303-312, New York, NY, USA. ACM.
  7. EUC (2015). FP7-Transport, Research supported by the European Commission. http://bit.ly/1btLACw. Accessed: 2015-09-22.
  8. Floater, M. S. and Hormann, K. (2005). Surface parameterization: a tutorial and survey. In Dodgson, N. A., Floater, M. S., and Sabin, M. A., editors, Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages 157-186. Springer, Berlin, Heidelberg.
  9. Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. (2000). Adaptively sampled distance fields: A general representation of shape for computer graphics. In Proceedings of the 27th Annual COnference on Computer Graphics and Interactive Tehniques, pages 249-254. ACM PRess/Addison-Wesley Publishing Co.
  10. Google inc. (2015). Google sparse hash, ver1.5. http://goog-sparsehash.sourceforge.net/. Accessed: 2014-09-26.
  11. Hirschmuller, H. and Scharstein, D. (2009). Evaluation of stereo matching costs on images with radiometric differences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9):1582-1599.
  12. Hornung, A., Wurm, K. M., Bennewitz, M., Stachiss, C., and Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots.
  13. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., and Fitzgibbon, A. (2011). Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera. In ACM Symposium on User Interface Software and Technology. ACM.
  14. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vision, 60(2):91- 110.
  15. Moulon, P., Monasse, P., and Marlet, R. (2013). Global fusion of relative motions for robust, accurate and scalable structure from motion. In The IEEE International Conference on Computer Vision (ICCV).
  16. Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its Applications, 9(1):141-142.
  17. Nießner, M., Zollh öfer, M., Izadi, S., and Stamminger, M. (2013). Real-time 3d reconstruction at scale using voxel hashing. ACM Transactions on Graphics (TOG).
  18. Teschner, M., Heidelberger, B., Mueller, M., Pomeranets, D., and Gross, M. (2003). Optimized spatial hashing for collision detection of deformable objects. Proceedings of Vision, Modeling, Visualization (VMV 2003), pages 47-54.
  19. Wu, C. (2011). Visualsfm: A visual structure from motion system. http://ccwu.me/vsfm/. Accessed: 2015-08- 30.
Download


Paper Citation


in Harvard Style

Funk E. and Börner A. (2016). Infinite 3D Modelling Volumes . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 246-253. DOI: 10.5220/0005722002460253


in Bibtex Style

@conference{visapp16,
author={E. Funk and A. Börner},
title={Infinite 3D Modelling Volumes},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={246-253},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005722002460253},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016)
TI - Infinite 3D Modelling Volumes
SN - 978-989-758-175-5
AU - Funk E.
AU - Börner A.
PY - 2016
SP - 246
EP - 253
DO - 10.5220/0005722002460253