HBD: Hexagon-Based Binary Descriptors

Yuan Liu, J. Paul Siebert

Abstract

In this paper, two new rotationally invariant hexagon-based binary descriptors (HBD), i.e., HexIDB and HexLDB, are proposed in order to obtain better feature discriminability while encoding less redundant information. Our new descriptors are generated based on a hexagonal grouping structure that improves upon the HexBinary descriptor we reported previously. The third level descriptors of HexIDB and HexLDB have 270 bits and 99 bits respectively fewer than that of SHexBinary, due to sampling 61% fewer fields. Using learned parameters, HBD demonstrates better performance when matching the majority of the images in Mikolajczyk and Scmidt’s standard benchmark dataset, as compared to existing benchmark descriptors. Moreover, HBD also achieves promising level of performance when applied to pose estimation using the ALOI dataset, achieving  0.5 pixels mean pose error, only slightly inferior to fixed-scale SIFT, but around 1.5 pixels better than standard SIFT.

References

  1. Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). Freak: Fast retina keypoint. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 510-517. IEEE.
  2. Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In Computer VisionECCV 2006, pages 404-417. Springer.
  3. Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). Brief: binary robust independent elementary features. In Computer Vision-ECCV 2010 , pages 778-792. Springer.
  4. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886- 893. IEEE.
  5. Geusebroek, J.-M., Burghouts, G. J., and Smeulders, A. W. (2005). The amsterdam library of object images. International Journal of Computer Vision, 61(1):103- 112.
  6. Ke, Y. and Sukthankar, R. (2004). Pca-sift: A more distinctive representation for local image descriptors. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II-506. IEEE.
  7. Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). Brisk: Binary robust invariant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2548-2555. IEEE.
  8. Liu, Y., Aragon-Camarasa, G., and Siebert, J. P. (2014). Object edge contour localisation based on hexbinary feature matching. In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 99-106.
  9. Liu, Y. and Siebert, J. P. (2014). Contour localization based on matching dense hexhog descriptors. In International Conference on Computer Vision Theory and Applications (VISAPP 2014), pages 656-666.
  10. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  11. Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10):1615-1630.
  12. Rosten, E., Porter, R., and Drummond, T. (2010). Faster and better: A machine learning approach to corner detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(1):105-119.
  13. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: an efficient alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2564-2571. IEEE.
  14. Tola, E., Lepetit, V., and Fua, P. (2010). Daisy: An efficient dense descriptor applied to wide-baseline stereo. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(5):815-830.
  15. Yang, X. and Cheng, K.-T. (2012). Ldb: An ultra-fast feature for scalable augmented reality on mobile devices. In Mixed and Augmented Reality (ISMAR), 2012 IEEE International Symposium on, pages 49-57. IEEE.
Download


Paper Citation


in Harvard Style

Liu Y. and Siebert J. (2016). HBD: Hexagon-Based Binary Descriptors . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 175-182. DOI: 10.5220/0005720401750182


in Bibtex Style

@conference{visapp16,
author={Yuan Liu and J. Paul Siebert},
title={HBD: Hexagon-Based Binary Descriptors},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={175-182},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005720401750182},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)
TI - HBD: Hexagon-Based Binary Descriptors
SN - 978-989-758-175-5
AU - Liu Y.
AU - Siebert J.
PY - 2016
SP - 175
EP - 182
DO - 10.5220/0005720401750182