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Abstract: In this paper we propose a novel real-time method for SLAM in autonomous vehicles. The environment is 
mapped using a probabilistic occupancy map model and EGO motion is estimated within the same 
environment by using a feedback loop. Thus, we simplify the pose estimation from 6 to 3 degrees of 
freedom which greatly impacts the robustness and accuracy of the system. Input data is provided via a 
rotating laser scanner as 3D measurements of the current environment which are projected on the ground 
plane. The local ground plane is estimated in real-time from the actual point cloud data using a robust plane 
fitting scheme based on the RANSAC principle. Then the computed occupancy map is registered against the 
previous map using phase correlation in order to estimate the translation and rotation of the vehicle. 
Experimental results demonstrate that the method produces high quality occupancy maps and the measured 
translation and rotation errors of the trajectories are lower compared to other 6DOF methods. The entire 
SLAM system runs on a mid-range GPU and keeps up with the data from the sensor which enables more 
computational power for the other tasks of the autonomous vehicle. 

1 INTRODUCTION 

The technology advancement in sensors and 
computer systems is enabling the proliferation of 
Advanced Driver Assistance Systems (ADAS) into 
the car market at an unprecedented pace. As of the 
year 2015, systems such as adaptive cruise control, 
automatic parking, automotive night vision, collision 
avoidance, emergency braking, hill descent, lane 
departure assistance, traffic sign recognition etc. can 
be found as standard equipment even in the mid-
range vehicles on the market. Recent reports about 
road safety indicate that driver error is the main 
contributor to more than 90% of traffic accidents 
(KPMG,2012), (Fagnant,2013). Even when the main 
reason for a crash is due to malfunctions of the 
vehicle or problems with the road or environment, 
some additional human factors can often have 
contributed to the crash and the severity of the 
injuries. Leading companies involved in autonomous 
vehicles believe that only completely self-driving 
cars will fully address safety concerns. 
 Such intelligent vehicles make use of advanced 
perception systems that could sense and interpret 
surrounding environment based on various kinds of 

sensors, such as: radar, lidar (laser rangefinder), 
monocular / binocular / omnidirectional vision 
systems, ultrasound, etc. Many of the following 
tasks for the intelligent vehicle can be performed 
within the same framework of sensory interpretation 
(Leonard,2008), (Nguyen,2012). The initial tasks is 
ego localization since the vehicle can’t drive safely 
if it doesn’t know its location and orientation (i.e. 
pose). The problem of pose estimation has been 
exhaustively researched in various applications such 
as stereo vision, structure from motion, mapping and 
augmented reality, however one can conclude that 
most of the proposed methods in the literature are 
computationally expensive and do the estimation 
off-line. The mainstream of approaches are based on 
key feature detection in optical video frames, which 
can be assessed by looking at the standard odometry 
benchmark (Geiger, 2012 and 2013). Tracking and 
registration of the detected features is often done 
using the Iterative Closest Point (ICP) approach 
(Pomerleau,2013). Pose estimation can also use the 
data from inertial navigation sensors (INS), global 
position system (GPS) or wheel rotation sensors, as 
prior motion information in achieving real-time 
computation speed (Scherer,2012). Kalman or 
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particle filters are often used in order to reinforce the 
measurements with the past data for more natural 
estimation. 

 

Figure 1: Small section of an occupancy grid map with 
cell size 12.5x12.5cm. 

When no additional data is available but the one 
that comes from the stereo cameras and/or lidar, 
many approaches have been proposed registering the 
point clouds using a more suitable representation. 
Notably, methods such as (Moosmann, 2011) use 
projection of the point cloud onto a range image and 
then use features extracted from these images to do 
the matching between consecutive sweeps. On the 
other hand, there are methods which try to extract 
geometric primitives from within the point clouds, 
such as planes and edges, and then use them for 
matching and registration (Zhang,2014). These 
approaches have their pitfalls in situations where the 
environment does not contain simple planes and 
edges (open roads, forests, parks). There are two 
issues with these types of approaches: first, the high 
computational cost for extracting the robust image 
features and second, images in the visual spectrum 
often fail to capture good information in adverse 
weather conditions and during the night.  

Therefore, we part with the standard 6DOF point 
cloud registration paradigm and propose a novel 
algorithm for simultaneously mapping the perceived 
environment and performing the localization task 
using the previous state of what has already been 
mapped. We adopt the so called occupancy grid map 
as a medium for all further operations of the 
autonomous vehicle. In the literature, authors make 
use of these logical representation, i.e. maps, which 
explains the occupancy of the environment in a 
probabilistic way, first proposed by (Moravec, 1985) 
for use in sonar mapping.  

Occupancy grid maps are spatial representations 
of the external environment. The external world is 
represented by a high resolution grid of variables 
that model the occupancy of the space. Besides the 
mapping the occupancy data can also be used for 
various other key functions necessary for the mobile 
vehicle navigation, such as positioning, path 
planning, collision avoidance object detection and 
prediction of the future state of the environment. 

Older studies suggest that occupancy grid maps 
are arguably the most successful environment 
representation in mobile robotics to date 
(Kortenkamp,1998). Moreover, in the domain of 
autonomous vehicles, they are an optimal way of 
recording a background model of the vast 
environments, Fig.1. An efficient implementation of 
these maps has been proposed by (Homm, 2010), 
which will be explained in more detail in chapter 2. 

We also make a simplification to the system 
assuming that the world the vehicle is moving 
through is completely flat and that it can be precisely 
modelled via a two dimensional map. This way the 
localization becomes a 3DOF registration problem 
which can be solved robustly and more importantly, 
with a tight real-time constraint. Our main sensor is 
the Velodyne HDL-64E lidar which experiences the 
same general motion as the vehicle: three degrees of 
translational freedom and three degrees of rotation 
relative to the environment. The pose estimation can 
be seen as a closed feedback loop system that also 
tries to produce a map of the environment using the 
estimated pose information. A detailed analysis of 
the classical pose estimation approach and our 
simplified method follows in chapter 3. 

The speed and accuracy of the proposed method 
is experimentally tested in chapter 4 and we give our 
concluding remarks in the discussion in chapter 5. 

2 OCCUPANCY MAP 

The proposed model of the environment estimates 
the probability of occupancy for each world 
coordinate using the inverse sensor logic. This 
means that the sensor measurements are used to 
reconstruct the most probable map using a Bayesian 
reasoning. Occupancy maps can be a very elegant 
solution to the problem of mapping when there is a 
multitude of heterogeneous sensors on board the 
vehicle. They are invariant to the category of the 
scanned objects in the environment as long as they 
are correctly transformed into probability of 
occupancy. For example, one can incorporate 
measurements from object detectors, ultrasound 
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objects, distance measures from lidar or stereo 
cameras into one single occupancy map. 

Let us define the occupancy map as a 2D grid ݉ 
in the ݕݔ plane with grid elements ݉௜,௝and a series 
of ݖଵ,...,் measurements obtained from the lidar. Each 
sensor measurementݖ௜ contains information about 
the occupancy of several grid locations together with 
the pose of the vehicle which might come from other 
sensors. So, the problem of simultaneous building of 
the map and localization of the vehicle can be 
explained by finding the ego motion of the vehicle 
using the previously built map and cumulatively 
computing the probability of occupancy for each 
grid element ݉௜,௝ given the new measurements in 
்ܼ. 

We will first explain the update of the occupancy 
map for a static vehicle, or a moving vehicle for 
which we already solved the ego location. The 
probability of occupancy for each grid element (cell) 
can be estimated separately from the rest of the map 
 

ଵݖ|൫݉௜,௝݌ … ൯. (1)்ݖ
 

Commonly the log-odds or log likelihood ratio 
representation is used for computational reasons 
since its update requires a simple addition operation, 
 

݈௜,௝ ൌ ݃݋݈
ଵݖ|൫݉௜,௝݌ … ൯்ݖ

1 െ ଵݖ|൫݉௜,௝݌ … ൯்ݖ
, (2)

 

where the posterior ݉௜,௝can be reconstructed from 
݈௜,௝by  
 

ଵݖ|൫݉௜,௝݌ … ൯்ݖ ൌ 1 െ
1

݁௟೔,ೕ
. (3)

 

Since the error level of our sensor is lower than the 
cell size, there is a high probability that most 
measurements will fall within their respective grid 
cells. Thus, we make an assumption that the 
probability of occupancy of ݉௜,௝ is conditionally 
independent of the rest of the map, even from its 
neighbouring cells. We therefore can estimate the 
posterior as  
 

ଵݖ|൫݉௜,௝݌ … ൯்ݖ

ൌ
ଵݖ|൫݉௜,௝݌௜,௝൯݉|்ݖ൫݌ … ଵ൯ି்ݖ

ଵݖ|்ݖሺ݌ … ଵሻି்ݖ
. 

(4)

 

If we apply Bayes rule to the term ݌൫்ݖ|݉௜,௝൯ we 
have the probability that the cell ݉௜,௝ is occupied: 
 

ଵݖ|൫݉௜,௝݌ … ൯்ݖ

ൌ
ଵݖ|൫݉௜,௝݌ሻ்ݖሺ݌൯்ݖ|൫݉௜,௝݌ … ଵ൯ି்ݖ

ଵݖ|்ݖሺ݌൫݉௜,௝൯݌ … ଵሻି்ݖ
. 

(5)

 

The probability of the grid cell to be free݉ప,ఫതതതതത, can be 
expressed with the same equation, and by noting that 
,൫݉ప,ఫതതതതത݌ ൯ ൌ 1 െ  ൫݉௜,௝൯ we can devise recursive݌
expression for the map update at time T given the 
past map and the current measurements and pose: 
 

݈௜,௝ ൌ ݃݋݈
൯்ݖ|൫݉௜,௝݌

1 െ ൯்ݖ|൫݉௜,௝݌

൅ ݃݋݈
1 െ ൫݉௜,௝൯݌

൫݉௜,௝൯݌
൅ ݈௜,௝

௣௔௦௧, 

(6)

 

where the initial map can be constructed from the 
prior probabilities for occupancy for each grid cell: 
 

݈௜,௝
଴ ൌ ݃݋݈

൫݉௜,௝൯݌

1 െ ൫݉௜,௝൯݌
. (7)

 

This approach builds an incremental map of the 
environment containing the log-odds for occupancy. 
The first term of equation (6) explains the log-odds 
of occupancy for a single cell given the 
measurements in்ݖ, and the second term is the prior 
log-odd of the cell. This relation is usually called an 
inverse sensor model because it translates the sensor 
measurements into their causes, i.e. the map. At any 
given point one can recover the probability of 
occupancy for the whole map using equation (3).  

A more accurate approach to occupancy map 
estimation is the forward sensor model which 
computes the likelihood of the sensor measurements 
in the space of all possible maps. This approach is an 
optimization problem where we search an optimal 
map which maximizes the probability of the given 
measurements. However, the forward model 
formulation prohibits a real-time implementation 
since it requires every sensor measurement in order 
to find the optimal map. We refer to (Thrun,2003) 
for further information about the implementation of 
the forward sensor model.  

In the following chapter we will explain how the 
pose estimation of the vehicle can be performed 
using the currently unregistered occupancy map data 
with relatively low computational complexity and 
high level of accuracy. 

3 POSE ESTIMATION 

3.1 Classical 6DOF Approach 

The pose of the sensor (lidar) corresponds to the 
orientation and position of the vehicle, where in the 
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first moment of time the pose is arbitrarily set at the 
coordinate centre. As the vehicle is moving through 
the world, it experiences rotational and translational 
changes to its pose. The simplest forward motion on 
a flat road produces a translation change in the axis 
perpendicular to the vehicle motion, thus the vehicle 
is moving with one degree of freedom. In the real 
world though, the vehicle might be taking a turn in a 
bend which has some incline (grade) and a slight 
camber to the road surface. Furthermore, the vehicle 
suspension will try to dampen the effects of the 
forward and lateral acceleration and keep the vehicle 
level to the ground. In these actual scenarios the 
sensor attached to the vehicle is experiencing 
changes within 6 degrees of freedom: motion in the 
three spatial dimensions, and rotation around the 
three axes, at the same time.  

The problem of pose estimation then becomes 
the standard problem encountered in structure from 
motion applications where a 6DOF fundamental 
matrix which explains the change of pose is being 
estimated from the sensor data. Assuming that the 
change in sensor data between two time intervals is 
entirely due to motion through static environment, 
then the 3D points measured in the present ܲ௧ are 
related to the 3D points measured in the past ܲ௧ିଵ 
via the augmented matrix: 
 

ܲ௧ ൌ ቂܴ௧ ௧ܶ
0 1

ቃ ܲ௧ିଵ, (8)
 

where the points are expressed in homogeneous 
coordinates, ܴ௧ represents the 3x3 rotation matrix 
and ௧ܶ represents a 3x1 translation vector. The pose 
can thus be estimated by finding the optimal 
transformation matrix which minimizes the distance 
between the two sets of 3D points after 
transformation. Although elegant, the solution of the 
ego motion is a typical non-linear least squares 
problem which is highly sensitive to noise. Several 
existing approaches can minimize or remove noisy 
data from the system at different points. A widely 
used technique is the Iterative Closest Point 
algorithm (Chen,1991) which is effectively applied 
in matching point cloud data by iteratively searching 
for the nearest neighbours for each point. Another 
popular method is the Random Sample Consensus 
which is designed to cope with large percentages of 
outliers in the data (Fischler, 1981) and can be 
applied to iteratively estimate the rotation and 
translation by using a subset of 3D points which 
produce the maximum number of inliers. 
Directly matching the point clouds generated by the 
lidar sensor cannot produce accurate results because 
of the non-uniform sampling technique of the 

rotating head, so most authors are adapting their 
methods to search for suitable geometric primitives 
within the point clouds and use them as features for 
further matching. Other types of approaches try to 
estimate the geometric primitives by projecting the 
point clouds onto a 360 degree panoramic image and 
use it to find robust features for matching. However, 
the autonomous vehicle does not always encounter 
regularly shaped manmade objects and most of the 
time when driving on open roads the surrounding 
objects are of natural origin. This relative scarcity of 
geometric primitives in the point-cloud data can 
render most of the geometrically based matching 
algorithms ineffective since they discard a lot of 
otherwise useful information.  

3.2 Proposed Method 

We are guided by the idea that no information from 
the sensors should be discarded and as such, the 
whole lidar point cloud should be used as a single 
feature for pose estimation. Since the objective in 
our project is SLAM with additional object detection 
within the built environment model, we adopt the 
occupancy map as a feature and use what 
information is available from the past measurements 
for registration. Among other benefits, this also 
makes the system design feasible for real-time 
application. From the experimental runs of the 
vehicle and the acquired point clouds we can 
observe that the car is moving in a relatively flat 
environment (low absolute road grade compared to 
the range of the sensor). The change in elevation 
between two consecutive laser scans falls below the 
noise threshold of the sensor. This motivates us to 
assume that the occupancy of the environment can 
be modelled using a flat two dimensional map, an 
important simplification to the pose estimation 
problem which brings higher accuracy and fast 
execution times. 

The algorithm starts by finding the ground plane, 
i.e. the 3D plane on which most of the road surface 
is laid on. The flat world assumption dictates that 
any difference of the estimated ground plane and the 
world plane (z=0) is due to sensor rotation. This can 
happen because of the dynamics of the vehicles’ 
suspension during linear or lateral accelerations and 
most notably while passing speed bumps or 
potholes. 

We use an iterative plane fitting algorithm on the 
raw point cloud data to select the three points that 
best explain the road surface. It is based on the 
paradigm of RANSAC in a way that in each iteration 
a random subsample of points is used to generate a 
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plane equation for which the average distance of all 
other points is computed and the subset with the 
lowest average distance (highest number of inliers) 
is selected. From the list of inliers ௜ܲ௡

௧  of this optimal 
subset, a new plane is fitted in a least squares sense. 
The point cloud is then “rectified” relative to this 
ground plane by applying the inverse rotation 
relative to the estimated ground normal. 

 

 

Figure 2: Example of the initial occupancy map, the black 
background is assumed to be free (p=0). 

 

Figure 3: Comparison of two occupancy maps with 
temporal difference of 500ms (red colour now codes the 
past information, same as Fig.2). 

The next step is the projection of the rectified 
point cloud on the world plane to produce the initial 
occupancy map. We accumulate the height of each 
3D point into the respective occupancy grid cell and 
produce a probability of occupancy based on the 
average height of points over that location. Points 
with height greater than 3m are assumed to be have 
a probability of 1 and points in between are scaled 

respectively, Fig.2. Thus, we obtain an orthographic 
projection of the environment in a form of a top 
view. Vehicle rotation will produce rotation of the 
features on the map, and vehicle translation will shift 
the rows and columns of the map. One can clearly 
see the actual change in rotation and position of 
features on Fig.3. where the initial occupancy map is 
compared with the occupancy map produced after 
500ms of driving. 

We will focus on this domain of imagery to 
estimate the current pose of the vehicle using 
standard image registration techniques. The aim is to 
estimate the rotation and translation change between 
two occupancy maps built from the sensor data of 
two consecutive positions. We adopt the widely used 
technique of Phase-Only Correlation (POC) 
(Nagashima,2007) which naturally decouples the 
rotation estimation from the translation estimation in 
a two step approach. The input occupancy maps are 
transformed using the 2D DFT 
 

௨,௩ሺܶሻܯ ൌ෍݉௜,௝ሺܶሻ݁ି௝ଶగ
ሺ௨௜ା௩௝ሻ

௜,௝

 

௨,௩ሺܶܯ െ 1ሻ ൌ෍݉௜,௝ሺܶ െ 1ሻ݁ି௝ଶగሺ௨௜ା௩௝ሻ

௜,௝

, 

(9)

where their respective amplitude spectra 
หܯ௨,௩ሺܶሻหand หܯ௨,௩ሺܶ െ 1ሻห are shift-invariant and 
thus can be used for rotation estimation. In order to 
directly estimate the rotation change we further take 
the log of each spectra and transform it in polar 

coordinates (்ܯ
ఘ,ఏ), thus the rotation estimation boils 

down to shift estimation. This is easily computed 
using the 2D convolution of these two images using 
the normalized cross-power spectrum  
 

ܴሺ݇ሻ ൌ
்ܯ

ఘ,ఏሺ݇ሻି்ܯଵ
ఘ,ఏ ሺ݇ሻതതതതതതതതതതത

ቚ்ܯ
ఘ,ఏሺ݇ሻି்ܯଵ

ఘ,ఏ ሺ݇ሻതതതതതതതതതതതቚ
, (10)

 

where ି்ܯଵ
ఘ,ఏ ሺ݇ሻതതതതതതതതതതത is the complex conjugate of the 

polar log spectrum of the occupancy map at time T-
1.The phase-only correlation is defined by the 
inverse discreet Fourier transform of (10). If the two 
input images are the same, then the POC function is 
the Kronecker delta function and the more the two 
images differ the more the peak height reduces and 
there is an apparent shift in the actual position of the 
peak. Peak height in the POCC function is a good 
measure of the similarity of the two images and the 
position of the peak is proportional to the angle of 
rotation in the pose of the vehicle. In our 
experiments we estimate the peak of the POC 
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function by parabolic fitting and thus estimate the 
rotation of the vehicle with sub “pixel” accuracy. 
 

 

Figure 4: Estimated trajectory vs. trajectory recorded using 
GPS/IMU for KITTI sequence 00, scale in [m]. 

Once the rotation has been estimated, the old 
occupancy map is rotated to match the current. The 
remaining difference, the shift of the two maps, is 
due to the forward translation of the vehicle which is 
again estimated similarly using the POC function 
from equation (10). It is important to note that we 
use a weighting function in a form of a low pass 
filter for the Fourier coefficients in order to reduce 
the effect of lidar noise introduced in the measured 
points and the presence of moving objects in the 
scene. 

The output of the spectral matching is the yaw 
angle delta of the vehicle between two consecutive 
sensor measurements and the magnitude of the 
translation vector in 2D space. In order to predict the 
actual X,Y position of the vehicle and its exact 
trajectory we multiply the translation magnitude by 
the cosine and sine of the yaw delta and accumulate 
the results over time 

்ߠ ൌ෍ߠ௜

்

௜ୀଵ

	

்ݔ ൌ ଵି்ݔ ൅ ݏ݊ܽݎܶ ∗ 	ሻ்ߠሺݏ݋ܿ
்ݕ ൌ ଵି்ݕ ൅ ݏ݊ܽݎܶ ∗ sinሺ்ߠሻ, 

(11)

where Trans is the estimated translation change 
between two consecutive scans. 

This information is fed back to the mapping 
equation (6) as part of the measurement ்ݖ in order 
to correctly project the lidar points on the global 
occupancy map of the environment. An example of a 
computed trajectory after several minutes of driving 
a loop through a public road can be seen on Fig.4, 
and the resulting occupancy map that has been 

generated on fig.5. 
 

 

Figure 5: Estimated occupancy map for KITTI 00. 

4 EXPERIMENTS AND RESULTS 

For validation we use the raw data streams provided 
by the lidar recordings from the KITTI dataset, and 
perform our mapping and registration analysis. We 
chose this particular dataset as it is currently the 
most comprehensive study about autonomous 
vehicles driving through public roads. The 
experimental dataset contains 21 recordings from 
driving the vehicle through urban, rural and highway 
roads. These recordings were made with the rotating 
lidar and two stereo camera pairs. We only used the 
data from the lidar which is rotating at 10Hz 
providing an aggregated point cloud every 100ms. 
Each point of the point cloud is defined with X,Y,Z 
Cartesian coordinates and a reflectance index. 
Additionally, a 6DOF pose matrix is given for each 
time instance. We will compare our trajectories to 
the GPS poses in order to measure the accuracy of 
the pose estimation, but since there is currently no 
ground truth data available for evaluating the 
occupancy mapping system, the map accuracy will 
only be measured qualitatively. 

Our estimated odometry poses contain 
information for 3DOF changes of the vehicle. We 
use the method for evaluation suggested by the 
authors of the KITTI dataset in order to compare the 
accuracy of the estimated trajectories, i.e. we 
compute the average rotation and translation errors 
for every segment of length 100,200... 800m. For the 
sequences which have GPS ground truth data 
available, {0..10}, we report an average 3DOF 
rotation error of 0.00380 deg/m and average 3DOF 
translation error of 0.2904% measured as an average 
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differences between the starting and ending poses 
for each sub-segment of length 100m to 800m using 
the distance metrics as follows: 
 

݀ሺߠଵ, ଶሻߠ ൌ min	ሺ2ߨ
െ ଵߠ| െ ,|ଶߠ ଵߠ| െ  ଶ|ሻߠ

௜ߠ∆ ൌ ݀൫ߠ௜, 	,௜ା௢௙௙௦௘௧൯ߠ
ݐ݁ݏ݂݂݋ ∈ ሼ100݉, 200݉,… ,800݉ሽ 

ݎ݋ݎݎܧݐ݋ܴ ൌ
1
ܰ
෍݀ሺ∆ߠ௜,ீ், ௜,ாௌ்ሻߠ∆

ே

௜

, 

(12)

 

where	݀ is the smallest distance between two angles, 
݅ is the start of each sub-trajectory and ܰ is the total 
number of sub-trajectories evaluated. For measuring 
the error in the Yaw angle, we extract the Yaw from 
each pose matrix of the ground truth and input it into 
equation (12). The 3DOF translation error is simply 
the average difference of the ܮଶ norms of each start 
and end position for the ground truth and estimated 
sub-trajectories. 

We also uploaded our results on the test server 
provided by the authors of the dataset to evaluate 
how this approach compares against other 6DOF 
algorithms. The 6DOF pose errors measures the 
angular and translational difference of the start and 
end pose matrix ௜ܲ in 3D : 
 

݀ሺ ଵܲ, ଶܲሻ ൌ ଶܲ
ିଵ

ଵܲ (13)
 

Our 6DOF pose matrices are constructed by 
transforming the three Euler angles and the 2D 
translation vector into a 3x4 matrix using the 
estimated Yaw angle and zeros for the roll and pitch, 
also, we use zero value for the height. Hence is the 
expected drop in accuracy measured using the test 
server of the KITTI dataset.  

Table 1 holds a summary for the accuracy of the 
results obtained with our algorithm compared to the 
other methods. The entire table and other 
information about the methods can be found at 
(KITTI, 2015), however, in this extract we included 
the top performing methods by means of translation 
error and one of the rare methods based solely on 
lidar point cloud data “pcl-ndt-gicp”. As expected, 
our approach has mediocre accuracy when tested on 
the full 6DOF benchmark with the missing non 
estimated data, scoring 1.89% average translation 
error and 0.0083 deg/m average rotation error. 
However, the 3DOF poses that we estimate score the 
highest accuracy on the list for translation error. 

We further investigated the robustness of our 
method by adding two types of noise to the point 
clouds. In the first experiment, the data is polluted 
with additive white Gaussain noise in all of the three 
spatial dimensions. The standard deviation of the 

distribution is increased within reasonable ranges [5-
100cm] simulating point-clouds from a low-end 
laser scanner. In the second experiment we have 
kept the original points from the lidar intact only we 
adding new points which simulate erroneous data i.e. 
outliers which might be produced from other 
sensors. The rate of outlier pollution, again, was 
increased within reasonable ranges [2.5-90%].The 
resulting 3DOF rotation and translation errors for the 
KITTI dataset are measured as previously described. 
We observed that the proposed method is able to 
cope well with large amounts of both additive noise 
and the presence of outliers. The translation error 
seems to sharply increase once an additive error of 
more than 70cm is added to the lidar data or once 
there are more than 60% outlier points. This 
robustness is due to the nature of the spectral 
matching pose estimation. 

Table 1: Average rotation and translation errors in 6DOF 
for the test sequences of the KITTI dataset. 

Method Terr. Rerr. Exec. time Environ. 
V-LOAM 0.75% 0.0018 0.3s 4xCPU 

LOAM 0.88% 0.0022 1s 2xCPU 
SOFT 1.03% 0.0029 0.1s 2xCPU 

Cv4xv1-sc 1.09% 0.0029 0.145s GPU 
...     

PROPOSED 
3DOF 

0.29% 0.0038 0.05s GPU 

PROPOSED
6DOF 

1.89% 0.0083 0.05s GPU 

pcl-ndt-gicp 2.02 0.008 2s 10xCPU 

Our GPU implementation has an execution time 
which can keep up with the lidar data. The algorithm 
is running at around 20fps on a mid-range graphics 
card. The registration of the occupancy maps 
consumes around 30-40ms and the rest is spent on 
the RANSAC and fitting for the ground plane 
estimation (10-20ms).  

5 CONCLUSION 

We proposed a feedback loop approach for SLAM 
by using the probabilistic occupancy map model. By 
simplifying the pose estimation problem in the 
3DOF domain of the occupancy map we have 
managed to achieve high accuracies for both 
translation and rotation estimation. The resulting 
trajectories correspond very well to the orthographic 
projections of the path the vehicle is taking and the 
built maps accurately reflect the occupancy 
situation. By avoiding the time consuming and often 
unreliable stereo video feature matching approach 
we managed to localize the vehicle using only the 
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laser scanner point clouds in their entirety as a single 
feature. 

However, the laser scanner produces point 
clouds that are oftentimes are subjected to clearly 
visible rolling shutter effect. Few authors in the past 
have pointed out this problem when trying to use the 
raw point clouds as input for odometry, and different 
de-warping techniques have been used in order to 
produce an accurate image of the environment. This 
is done relying on additional sensors for motion 
prior which in our project were not fully available. 
We demonstrated that by using the warped point 
clouds provided by the KITTI dataset the occupancy 
map registration algorithm can produce accurate 
enough results for the purpose of mapping and later 
object detection of the autonomous vehicle. We 
point reader to observe a detailed crop from one of 
the built occupancy maps on Fig.1 and also to check 
the integrity of the built map shown on Fig.5. 

The main drawback of our method is an actual 
result of the simplification of the problem and can 
happen when the vehicle crosses its own path over a 
bridge. The method is currently unable to put the 
height difference into the occupancy map.  

ACKNOWLEDGEMENTS 

The work was financially supported by IWT through 
the Flanders Make ICON project 140647 
“Environmental Modelling for automated Driving 
and Active Safety (EMDAS)”. 

REFERENCES 

KPMG (2012), “Self-Driving Cars: The Next Revolution”, 
KPMG and the Center for Automotive Research; at 
www.kpmg.com/Ca/en/IssuesAndInsights/ArticlesPub
lications/Documents/self-driving-cars-next-revolution. 
pdf. 

Daniel J. Fagnant and Kara M. Kockelman (2013), 
“Preparing a Nation for Autonomous Vehicles: 
Opportunities, Barriers and Policy 
Recommendations”, Eno Foundation; at 
www.enotrans.org/wpcontent/uploads/wpsc/download
ables/AV-paper.pdf. 

John Leonard. “A perception-driven autonomous urban 
vehicle”. Journal of Field Robotics, vol. 25, pages 
727-774, October 2008. 

Thien-Nghia Nguyen, Bernd Michaelis and Al-Hamadi. 
“Stereo Camera Based Urban Environment Perception 
Using Occupancy Grid and Object Tracking”. IEEE 
Trans. on Intelligent Transportation Systems, vol. 13, 
pages 154-165, March 2012. 

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for 
autonomous driving? The kitti vision benchmark 
suite,” in IEEE Conf. on Computer Vision and Pattern 
Recognition (CVPR), 2012, pp. 3354–3361. 

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision 
meets robotics: The KITTI dataset,” Int. Journal of 
Robotics Research, no. 32, pp. 1229–1235, 2013. 

F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, 
“Comparing ICP variants on real-world data sets,” 
Autonomous Robots, vol. 34, no. 3, pp. 133–148, 
2013. 

S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, 
S. Nuske, and S. Singh, “River mapping from a flying 
robot: state estimation, riverdetection, and obstacle 
mapping,” Autonomous Robots, vol. 32, no. 5, pp. 1 – 
26, May 2012. 

F. Moosmann and C. Stiller, “Velodyne SLAM,” in IEEE 
Intelligent Vehicles Symp. (IV), Baden-Baden, 
Germany, June 2011. 

J. Zhang and S. Singh, “LOAM: Lidar Odometry and 
Mapping in Real-time”. Robotics: Science and 
Systems Conf. 2014. 

H. Moravec and A. Elfes. “High resolution maps from 
wide angle sonar”. In In Proc. of the IEEE Int. Conf. 
on Robotics & Automation (ICRA). volume 2, pages 
116121, Mar. 1985. 

D. Kortenkamp, R.P. Bonasso, and R. Murphy, editors. 
“AI-based Mobile Robots: Case studies of successful 
robot systems”, Cambridge, MA, 1998. MIT Press. 

Homm, F. BMW Group, Res. & Technol., Munich, 
Germany, Kaempchen, N. ; Ota, J. ; Burschka, D. 
“Efficient Occupancy Grid Computation on the GPU 
with Lidar and Radar for Road Boundary Detection”, 
2010 IEEE Intelligent Vehicles Symp. University of 
California, San Diego, CA, USA June 21-24, 2010 

Sebastian Thrun, “Learning Occupancy Grid Maps with 
Forward Sensor Models”, Journal Autonomous 
Robots, Vol. 15 Issue 2, Sept. 2003 Pages 111 – 127 

Y. Chen and G. Medioni, “Object modeling by registration 
of multiple range images,” in IEEE Int. Conf. on 
Robotics and Automation, 9-11 April 1991, pp. 2724 – 
2729. 

Martin A. Fischler and Robert C. Bolles. “Random sample 
consensus: a paradigm for model tting with 
applications to image analysis and automated 
cartography”. Communications of the ACM, vol. 24, 
pages 381-395, 1981. 

Sei Nagashima, Koichi Ito, Takafumi Aoki, Hideaki Ishii, 
Koji Kobayashi, “A High-Accuracy Rotation 
Estimation Algorithm Based on 1D Phase-Only 
Correlation”, ICIAR'07 Proceedings of the 4th 
international conference on Image Analysis and 
Recognition Pages 210-221 

KITTI odometry results, available on: 
http://www.cvlibs.net/datasets/kitti/eval_odometry.php 

Robust Matching of Occupancy Maps for Odometry in Autonomous Vehicles

635


