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Abstract:  Industrial Cyber Physical Systems (CPSs) are naturally complex. Manual configuration of CPS product 
lines is error-prone and inefficient, which warrants the need for automated support of product configuration 
activities such as decision inference and decision ordering. A fully automated solution is often impossible 
for CPSs since some decisions must be made manually by configuration engineers and thus requiring an 
interactive and step-by-step configuration solution. Having an interactive solution with tool support in mind, 
we propose a search-based solution (named as Zen-DO) to support optimal ordering of configuration steps. 
The optimization objective has three parts: 1) minimizing overall manual configuration steps, 2) configuring 
most constraining decisions first, and 3) satisfying ordering dependencies among variabilities. We 
formulated our optimization objective as a fitness function and investigated it along with four search 
algorithms: Alternating Variable Method (AVM), (1+1) Evolutionary Algorithm (EA), Genetic Algorithm, 
and Random Search (a comparison baseline). Their performance is evaluated in terms of finding an optimal 
solution for two real-world case studies of varying complexity and results show that AVM and (1+1) EA 
significantly outperformed the others. 

1 INTRODUCTION 

Cyber-Physical Systems (CPSs) are large-scale 
systems of systems communicating with each other 
based on digital cyber technologies, integrating 
software and physical components, and interacting 
with environment and human actors. CPSs are often 
seen in various domains including aerospace, energy 
and maritime, and healthcare. Product Line 
Engineering (PLE) is gaining increasing attention of 
researchers and practitioners because of its 
capability to deal with the increasing complexity and 
variation in software/system product lines (Frakes 
and Kang, 2005). Adopting PLE has shown to be 
effective for improving the quality of products and 
the productivity of developing the products. It has 
been reported in (Ali et al., 2012) that PLE can 
effectively speed up time-to-market in many 
organizations such as Boeing, Lucent, and Nokia. 

Due to the inherent complexity of CPSs, 
hundreds and thousands of reusable components 
(e.g., electronic components, software components 
or network component) are typically and integrated 

and configured. Therefore automated support based 
on concise abstractions of reusable artifacts becomes 
crucial to the configuration process, where 
abstraction plays a central role for software reuse 
while automation can facilitate effective selection 
and customization of reusable components. Such an 
automated configuration solution heavily relies on a 
large number of constraints, which can be formally 
specified using e.g., the Object Constraint Language 
(OCL) (OMG) to facilitate, for instance, automated 
decision inference based on dependencies of 
Variation Points (VPs) (i.e., configurable 
parameters) and the optimization of configuration 
steps. Our previous work (Nie et al., 2013b) 
classifies different types of constraints that should be 
explicitly captured and specified on product line or 
product models to enable automation in the context 
of CPS PLE. 

We have proposed an interactive configuration 
framework, named as Zen-Configurator (Kunming 
Nie, 2013, Hong et al., 2014, Hong et al., 2015, Nie 
et al., 2013), with the aim to implement at least three 
functionalities: Decision Inference, Decision 
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Ordering and Conformance Checking. A user 
interface has been developed; the decision inference 
and conformance checking functionalities have been 
implemented (Hong et al., 2014). The decision 
ordering functionality of Zen-Configurator should 
take the product line architecture model (including 
constraints) as input, order configuration decisions 
(VPs) in an optimized way such that overall manual 
configuration steps are minimized, which is the 
focus of this paper.  

In the literature, different methods have been 
proposed to address this problem such as applying 
SAT Solvers for ordering decisions (Nohrer and 
Egyed, 2011), relying on Constraint Satisfactory 
Problems (CPS) solvers to derive valid feature 
selection sequences (White et al., 2009), and 
prioritizing features based on their selectivity (Chen 
and Erwig, 2011). All these works handle relatively 
simple dependencies among variabilities, i.e., 
decision or feature selection. However, based on our 
previous experience of stusdying three industrial 
CPS product line families (Nie et al., 2013b), 
configuring CPSs require handling complex 
constraints, thus indicating the insufficiency of these 
work. Some configuration tools (e.g., Pure::Variants 
(Beuche, 2008), Dopler (Dhungana et al., 2011), 
Covamof (Sinnema et al., 2004), SPLOT (Mendonca 
et al., 2009), FMP (Czarnecki et al., 2005), and 
Questionnaire (La Rosa et al., 2009)) implemented 
the decision ordering functionality in various ways: 
based on user predefined configuration sequences, 
deriving configuration sequences from dependencies 
of variabilities, and simply applying depth first 
strategy to traverse feature models. None of these 
tools implemented the objective of minimizing 
manual configuration steps—the main objective of 
this work. As reported in (El-Sharkawy and Schmid, 
2012), the Dopler tool suite (Dhungana et al., 2011) 
is the only tool that implements the heuristic of 
configuring most constraining decisions first to 
reduce overall configuration effort, which aligns 
with part of our objective. 

In this paper, we propose a search-based solution 
(named as Zen-DO) to support optimal ordering of 
configuration decisions of CPS product lines. We 
propose and assess a fitness function for minimizing 
manual steps required to configure a product, while 
fulfilling configuration ordering dependencies of 
VPs to the maximum extent and starting from most 
constraining configuration decisions first. We 
evaluate the fitness function together with four 
search algorithms: Alternating Variable Method 
(AVM), Genetic Algorithms (GA), (1+1) 
Evolutionary Algorithm (EA) and Random Search 

(RS). RS was used as the baseline to evaluate the 
performance of the other three algorithms. Two real-
world case studies and 130 artificial problems have 
been used to evaluate the selected search algorithms 
and the fitness function. Results show that AVM and 
(1+1) EA significantly outperformed the other two 
algorithms for both of the real-world case studies 
and most of the artificial problems.  

The rest of the paper is organized as follows. In 
Section 2, we provide an overview of Zen-
Configurator and Zen-DO, and relevant background 
information. Section 3 presents the formalization of 
the optimization problem and the fitness function. 
The empirical study and the controlled experiment 
are discussed in detail in Section 5 and Section 6, 
respectively. We present the overall discussion in 
Section 6. We addresses the threats to validity of the 
empirical study in Section 7. Section 8 discusses the 
related work. We conclude the paper in Section 9. 

2 OVERVIEW 

In this section, we first introduce Zen-Configurator 
and then the overview of Zen-DO. 

2.1 Zen-Configurator 

As previously discussed, in the context of CPS PLE, 
there are a large number of VPs that have to be 
configured correctly by conforming to a large 
number of constraints. Product configuration is 
therefore an error-prone and time-consuming 
activity when it is totally manual. Hence, it is 
important to have an interactive and semi-automated 
configuration solution for CPS PLE. 

PLE is composed of two distinct phases: Domain 
Engineering and Application Engineering. In 
domain engineering, PLA modelling and constraint 
specification approaches are used by a Domain 
Expert to capture commonalities and variabilities in 
the system architecture and design and constraints 
relevant to the configuration of a valid product. In 
different contexts, different modelling and 
specification approaches can be used. As part of the 
Zen-Configurator solution, we rely on SimPL 
(Behjati et al., 2013), which is a modeling 
methodology with a UML profile for specifying 
commonalities and variabilities of a product line of 
integrated control systems at the architecture and 
design level. SimPL was developed to deal with four 
types of variabilities: Cardinality, Attribute, 
Topology and Type. As shown in Figure 1, a subsea 
production  system  that  may  have  more  than  one 
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Figure 1: An Example of SimPL Model (Excerpted From (Behjati et al., 2013)). 

subsea fields with various types, such as scattered 
subsea fields. Two template packages are 
stereotyped with <<ConfigurationUnit>> and 
associated to classes SubseaProductionSystem and 
SubseaField to specify the VPs of each of these two 
classes. As an example, we specify one OCL 
constraint for this model, that is, all the subsea fields 
are scattered subsea fields and the pressure of all 
subsea fields is less than the max pressure of a 
subsea production system. 

In the application-engineering phase, Zen-
Configurator has three key functionalities (Decision 
Inference, Decision Ordering and Conformance 
Checking), to assist configuration engineers to 
configure a product. PLA models and constraints of 
the product line are considered as product line assets 
stored in a repository, which are used as the input to 
facilitate the automation of configuring products. 
Configured products are therefore stored in the 
Product Artifacts Repository. We have previously 
implemented an automated and incremental 
conformance checking approach, named Zen-CC, to 
ensure that the manual configuration of each VP 
conforms to a set of pre-defined conformance rules 
specified in OCL (Hong et al., 2014). 

Zen-Configurator relies on a set of algorithms 
that implement a set of heuristics (e.g., determining 
optimal decision orders), which are identified as key 
elements to optimize the effectiveness and efficiency 
of the configuration solution. These algorithms need 
to access the PLA models and constraints at runtime 
and therefore, it is crucial to have a lightweight 
internal representation capturing sufficient 
information for supporting efficient configuration. In 
Zen-Configurator, we use Trees (e.g., with nodes 
representing VPs and edges denoting VP 
dependencies) for this purpose. Automated 
transformation from the PLA models and constraints 
(SimPL and OCL respectively) to Trees is needed in 
Zen-Configurator. Zen-Configurator also needs to 
employ search algorithms for optimal decision 
ordering, which require encoding of the problem, a 

fitness function to assess a solution, and parameter 
settings specific to each search algorithm. The focus 
of the paper is to propose such a search-based 
decision ordering solution. 

 

Figure 2: Illustrative Example of Zen-DO. 

2.2 Zen-DO 

In a typical PLE practice, a product line specification 
captures commonalties and variabilities of a product 
line. For example, feature models (Czarnecki et al., 
2005) are commonly used for this purpose. VP is a 
configurable element of a product line specification 
and it defines the place of the variability. A variant is 
one of the possible choices to be bound for a VP. 
VPs can be specified in different ways, including 
value range, constraints, or enumeration literals, 
depending on applications. When resolving a VP, a 
variant is bound to the respective VP. A Constraint, 
in our context, is an element of system specification 
constraining one or more other elements to support 
automated product configuration.  

Zen-Configurator is an interactive configuration 
tool that interacts with users, in our context 
Configuration Engineers, to configure a product line 
family and derive a set of family members: products. 
Configuration engineers in this configuration 
environment are considered as part of the 
optimization as they receive feedback (on which 
decisions to make first) from the tool and 
configuration engineers’ manual decisions trigger 
the configuration tool to dynamically find other 
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optimized configuration orders based on the 
remaining VPs to be configured in the whole 
configuration space (all VPs should be configured 
and all constraints should be satisfied to various 
extents). This kind of configuration design is called 
“User-in-the-loop” (Sayyad et al., 2013).  

VPs and constraints are taken as input by the tool. 
Note that as we investigated in our previous work 
(Nie et al., 2013b), decision ordering in such a user-
in-the-loop interactive configuration environment 
relies on two types of constraints: variability 
dependencies and ordering constraints. These 
constraints can be either user defined, derived from 
system specifications, or enforced by a particular 
system development process. These constraints, 
together with the product line architecture model, 
contribute to the formation of the internal 
representation: Forest consisting of a set of Trees, 
which are necessary to formulate our optimization 
problem, thereby proposing the fitness function. 

Suppose we have obtained such a set of 
constraints, applying each constraint will form an 
ordering tree with nodes representing VPs to be 
configured and edges describing which VP should 
be configured before or after which other VP(s). By 
applying all the identified constraints, a forest is 
formed, containing a set of trees (each of which 
corresponds to a constraint constraining the 
configuration sequence of a set of VPs) and having 
each yet-to-be configured VP covered in the forest. 
In the forest, all the yet-to-be configured VPs must 
be configured to obtain a product.  

We then apply search algorithms to derive a set 
of trees based on three heuristics: 1) covering yet-to-
be configured VPs as many as possible, 2) 
minimizing the number of Abstract Configuration 
Ordering Trees (ACOTs) to be contained in a 
solution, and 3) minimizing the manual steps 
required to configure a product. For example, as 
shown in Figure 2, Tree 1 and Tree 2 were selected 
as the optimal solution given the forest, because 
these two trees cover all the VPs (1-8) and form a 
solution with the minimum number of trees (i.e., 2). 
An optimal solution (Tree 1 and Tree 2) will be 
provided to configuration engineers and they will 
select any of the root nodes of these trees 
(representing VP1 and VP3) to configure them 
manually. The consequence of this manual 
configuration is that the remaining VPs to configure 
will be updated. Therefore, the forest will be 
updated and the optimization process will start to 
find another solution for the new updated forest.  

It is important to notice that our optimization 
solution is independent of any product line 

specification or modeling methodology as the 
optimization starts from the forest, which captures 
all the required information for the optimization. 
This gives us the freedom to make this work 
applicable to different contexts such as combing 
with feature models or architecture and design based 
variability modeling methodologies. However, as an 
integrated part of Zen-Configurator, a 
transformation from SimPL to the internal 
representation (Trees) has been implemented. 

3 PROBLEM REPRESENTATION 
AND FITNESS FUNCTION 

3.1 Definitions 

A forest F is a set of Configuration Ordering Trees 
and is defined as F= {COT1, COT2, …, COTncot}, 
where ncot is the total number of configuration 
ordering trees. 

VP = {vp1, vp2, …, vpnvp} is a set of VPs, where 
nvp is the total number of VPs to be configured. 
Each vpi in VP has an attribute Configured of type 
Boolean.  

Configuration Ordering Tree (COT) is a tree of 
in the F forest defined above. COT = {{Node}, 
{Edge}}. Note that it is also possible that a COT only 
constrains one node. Each node represents a VP 
from VP. Each edge represents an ordering 
dependency of two VPs. Edge = {e1, e2, .., ene}, 
where each edge ei connects a pair of vpk and vpj 

from Node. Each edge ei has a set of attributes: 
Manual and Infer of type Boolean, respectively 
indicating whether a configuration step is manual or 
can be automatically inferred. Such information can 
only be obtained using heuristic rules, as it is 
impossible to know in advance which step is manual 
and which step can be automatically inferred based 
on pre-defined constraints, as the whole process is 
dynamic and interactive. For example, one simple 
heuristic rule could be that VPs that are configurable 
parameters with primitive types but are not involved 
in any pre-defined constraint are most probably 
required to be manually configured. Another 
example is that for VPs with primitive types have 
high chance to be automatically inferred when they 
are involved in constraints with other VPs that are 
already configured. Note that implementing these 
heuristics to predict this property of a configuration 
step is out of the scope of this paper and will be 
automated in the future.  

Each edge of a COT is also characterized with 
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another attribute Weight with three categories: High, 
Medium and Low, each of which respectively 
indicates the extent of dependency of two VPs. 
There are several ways to obtain this information. 
One commonly used way is to ask user’s preference 
on the configuration order, which might not be 
classified as Medium and Low. Some dependencies 
should be classified High as configuring one VP 
depends on the decision made for another VP. Such 
information can be automatically obtained by 
querying variability models or constraints on VPs. 

Abstract Configuration Ordering Graph (ACOG) 
consists of a set of nodes and edges: ACOG = 
{{AbstractCOT}, {AbstractEdge}}. AbstractCOT = 
{acot1, acot2, …, acotnan}, where each acoti is a COT. 
AbstractEdge = {ae1, ae2, .., aenae}, each aei connects 
a pair of acotj and acotk. Note that edges in 
AbstractEdge do not have attributes. 

3.2 Optimization Problem 

For configuration, there is a subset of AbstractCOT: 
ሼܽܿݐ݋ଵ, ,ଶݐ݋ܿܽ  ௡ೌ೎೚೟ሽ, based on which a set ofݐ݋ܿܽ	…
potential solutions ஺ܵ௕௦௧௥௔௖௧஼ை் ൌ ሼݏଵ, ,ଶݏ … ௡௦ሽݏ  can 
be derived, where ns is the total number of solutions 
and can be calculated as 2௡ೌ೎೚೟ 	െ 	1. For each si, 
there is nacoti belonging to SNACOT = {nacot1, 
nacot2, …, nacotns}, where 1=<nacoti<=nacot. In 
addition, for each si, there is vpcoti belonging to 
SNACOT = {vpcot1, vpcot2, …, vpcotns}, where 
1=<vpcoti<=total number of remaining VPs. This 
constraint is implemented as part of our algorithms 
and we also implemented the four heuristics below.  
 Covering VPs that appear in the forest as many 

as possible. Our aim is to find si such that the 
maximum number of VPs that appear in the 
forest should be included in the abstract nodes of 
si. This is to ensure that most of the VPs in the 
forest should be taken into account when making 
a configuration ordering plan (a solution to 
search). We define the following formula for this 
aim: ∀	݇: ܵே஺஼ை், ௜ݐ݋ܿ݌ݒ ൐ ,௞ݐ݋ܿ݌ݒ	 ݅	݁ݎ݄݁ݓ ്
݇. This heuristic tries to find a solution si with 
the maximum number of VPs. 

 Starting from most constraining configuration 
decisions. To achieve this, a search algorithm 
must guide the search towards large abstract 
nodes having the largest number of VPs 
connected to them. Recall that when constructing 
the forest, a constraint is applied to form a tree in 
the forest. Therefore, large trees (i.e., large 
abstract nodes) reflect complex constraints 
restricting large numbers of VPs. Hence, we 
define this formula for this heuristic, which later 

on is translated into a part of the fitness function: 
∀	݇: ܵே஺஼ை், ௜ݐ݋ܿܽ݊ ൏ ,௞ݐ݋ܿܽ݊	 ݅	݁ݎ݄݁ݓ ് ݇ , 
meaning to find a solution si with the minimum 
number of abstract nodes in AbstractCOT. 

 Searching for a solution with the minimum 
number of manual configuration steps. To 
achieve this, we defined formula: 

ሺ∑ ݈ܽݑ݊ܽ݉.௞݁	݁ݎ݄݁ݓ,1 ൌ ሻ݁ݑݎݐ ൏ ሺ∀	݆ ൌ
௡೐ೄ೔
௞ୀଵ

݅	݀݊ܽ	ݏ݊	݋ݐ	1 ് ݆, ∑ .௟݁		݁ݎ݄݁ݓ,1 ݈ܽݑ݊ܽ݉ ൌ ݁ݑݎݐ
௡೐ೄೕ
௟ୀଵ ሻ. 

 Guiding the search towards the direction of 
satisfying dependencies of VPs to the maximum 
extent. Recall that the edges in the trees of the 
forest are weighted with three categories: High 
(0), Medium (1), Low (2), indicating to which 
extent configuration ordering dependencies of 
VPs should be satisfied while deriving a solution. 
We use the following formula to formulate the 
heuristic:  

ሺ෍൝
0, .݇݁	݁ݎ݄݁ݓ ݐ݄݃݅݁ݓ ൌ ′݄݃݅ܪ′

1, .݇݁	݁ݎ݄݁ݓ ݐ݄݃݅݁ݓ ൌ ′݉ݑ݅݀݁ܯ′

2, .݇݁	݁ݎ݄݁ݓ ݐ݄݃݅݁ݓ ൌ ′ݓ݋ܮ′
൏ ሺ∀	݆ ൌ ݅	݀݊ܽ	ݏ݊	݋ݐ	1

݊݁ܵ݅

݇ൌ1

് ݆,෍൝
0, .݈݁	݁ݎ݄݁ݓ ݐ݄݃݅݁ݓ ൌ ′݄݃݅ܪ′

1, .݈݁	݁ݎ݄݁ݓ ݐ݄݃݅݁ݓ ൌ ′݉ݑ݅݀݁ܯ′

2, .݈݁	݁ݎ݄݁ݓ ݐ݄݃݅݁ݓ ൌ ′ݓ݋ܮ′

݆݊݁ܵ

݈ൌ1

ሻ 

3.3 Fitness Function 

Based on the definitions and the formulated 
optimization problem, we derive the fitness function 
that is used along with the six selected search 
algorithms to find optimal solutions for our 
optimization problem. 

The fitness function (formula (1)) is composed of 
four parts, which are defined in formulas (2)-(5), 
respectively. These four formulas correspond to the 
heuristics described in the previous section. We 
applied the division method in the fitness function to 
normalize values produced by formulas (2)-(5) so 
that each heuristic has equal importance. nacot is the 
total number of nodes in AbstractCOT. ∑ ݊݁௟

௡ೌ೎೚೟
௟ୀ	ଵ  

represents the total number of edges in AbstractCOT. 
Our objective is to minimize f(si), i.e., searching a 
value of f(si) closer to 0 (fittest solution). 

4 EMPIRICAL STUDY 

We conducted experiments to evaluate the fitness 
function with the four search algorithms for 
addressing our optimization problem: minimizing 
the manual steps required to configure a product, 
while covering the VPs, fulfilling the configuration 
ordering  dependencies to  the maximum  extent and 
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݂ሺݏ௜ሻ ൌ
݊݅ݎ݁ݒ݋ܥݐݏ݋݉ ௜݃ ൅ ݊݅ݐ݊݅ܽݎݐݏ݊݋ܥݐݏ݋݉	 ௜݃ ൅ ௜ݏ݌݁ݐ݈ܵܽݑ݊ܽܯ݊݅݉ ൅ ௜ݕݎ݋ݐ݂ܽݏ݅ݐܽܵ݌݁ܦݔܽ݉

4
 (1)

௜݃݊݅ݎ݁ݒ݋ܥݐݏ݋݉ ൌ 1 െ
௜ݐ݋ܿ݌ݒ

݈ܽݐ݋ݐ ݎܾ݁݉ݑ݊ ݂݋ ݄݁ݐ ݊݋݅ݐܽ݅ݎܽݒ ݏݐ݊݅݋݌
 (2)

݊݅݊݅ܽݎݐݏ݊݋ܥݐݏ݋݉ ௜݃ ൌ
ሺ݊ܽܿݐ݋௜ሻ

݊௔௖௢௧
 (3)

௜ݏ݌݁ݐ݈ܵܽݑ݊ܽܯ݊݅݉ ൌ
ቀ∑ 1, ݁ݎ݄݁ݓ ݁௟.݈݉ܽ݊ܽݑ ൌ ݁ݑݎݐ

௡೐ೄ೔
௟ୀଵ ቁ

∑ ݊݁௟
௡ೌ೎೚೟
௟ୀ ଵ

 (4)

ݕݎ݋ݐ݂ܽݏ݅ݐܽܵ݌݁ܦݔܽ݉ ൌ

∑ ቐ
0, ݁ݎ݄݁ݓ ݁௟. ݐ݄݃݅݁ݓ ൌᇱ ᇱ݄݃݅ܪ

1, ݁ݎ݄݁ݓ ݁௟. ݐ݄݃݅݁ݓ ൌᇱ ᇱ݉ݑ݅݀݁ܯ

2, ݁ݎ݄݁ݓ ݁௟. ݐ݄݃݅݁ݓ ൌᇱ ᇱݓ݋ܮ

௡೐ೄ೔
௟ୀଵ

∑ ݊݁௟
௡ೌ೎೚೟
௟ୀ ଵ

 
(5)

 

starting from most constraining configuration 
decisions. Details are reported in Section 5. 

In Section 4.1, we present the research questions 
of the empirical study. In Section 4.2, we discuss 
two case studies used in the empirical evaluation. 

4.1 Research Questions 

In the empirical study, we aim to investigate the 
following five research questions (RQs): RQ1: Are 
the search algorithms effective to solve our 
optimization problem, to compare with RS? RQ2: 
Among the studied search algorithms, which one 
fares best in solving our optimization problem? RQ3: 
How does the configuration of VPs impact the 
performance of the search algorithms? RQ4. How 
does the number of VPs and the number of trees 
impact the performance of the search algorithms?  

4.2 Case Studies 

Crisis Management System (CMS): We 
significantly extended the scope of Crisis 
Management System (CMS) based on the 
requirements defined by Capozucca et al. 
(Capozucca et al., 2012), modeled the architecture of 
CMS containing CMS police, rescue, traffic control 
etc., as well as corresponding VPs using SimPL, and 
specified ordering and conformance rules as OCL 
constraints. Part of the SimPL model (Table 1) has 
been presented in the CMA@MODELS 2013 
workshop, evaluated by modeling experts and was 
deposited to the ReDoMM repository 1  for public 
access. 

Subsea Control: Based on several years of 
experience of conducting industry-oriented research 
in subsea oil and gas and in the context of PLE 

                                                           
1  http://www.cs.colostate.edu/remodd/v1/content/modeling-architecture-

and-design-crisis-management-system-product-line-using-simpl 

(Behjati et al., 2013, Briand et al., 2012), we 
modeled the main concepts presented in Part 6 
(subsea production systems) of the ISO 13628-
6:2006 standard (ISO13628-6, 2006) using SimPL. 
The developed SimPL (Table 1) was further 
enriched with the well-known subsea engineering 
hand-book (Bai and Bai, 2012).  

Table 1: Descriptive Statistics of CMS and Subsea 
Control. 

Model Elements CMS Subsea Control 
Packages 30 13 
Classes 188 71 

VP Types Cardinality 62 13 
Attribute 49 91 
Topology 9 7 

All 120 111 
OCL Constraints 31 25 

5 EVALUATING SEARCH 
ALGORITHMS 

This section reports the evaluation for answering 
RQ1-RQ4. The experiment design and execution is 
presented in Section 5.1 and analyses and results are 
discussed in Section 5.2. 

5.1 Experiment Design and Execution 

In our experiments, we compared three search 
algorithms: AVM, GA, (1+1) EA, and used RS as a 
comparison baseline to assess the difficulty of the 
addressed problems. AVM represents typical local 
search algorithms. GA is the most commonly 
applied global search algorithm. (1+1) EA has been 
proved effective for software engineering problems 
(e.g., see (Huihui et al., 2015, Yan et al., 2015)). In 
terms of GA, we set the population size to 100 and 
the crossover rate to 0.75, and a 1.5 bias for rank 
selection. We use a standard one-point crossover, 
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and mutation of a variable is done with the standard 
probability 1/n, where n is the number of variables.  

5.1.1 Design of Search Problems 

Real-world Configuration Problems: To answer 
RQ1-RQ3, we simulated two configuration 
processes of the two case studies (Section 4.2) and 
evaluated the performance of the search algorithms 
at each manual configuration step. Notice that Zen-
DO is invoked as a result of manual configuration of 
a VP in Zen-Configurator, which can lead to the 
automated decision inference of other VPs. At each 
manual configuration step, a new search problem is 
formed and then solved by the search algorithms. As 
shown in Table 1, the VPs defined in the PLA 
models of CMS and Subsea Control are 120 and 111 
respectively. We simulated a large part of a 
complete configuration process for each case study 
and as a result, we obtained 106 search problems for 
CMS and 64 search problems for Subsea Control. 
Notice that during the configuration process, 
instances of a cardinality VP are populated based on 
the configuration value to the cardinality VP. The 
populated instances usually contain attribute VPs, 
which need to be further configured. In short, the 
number of VPs in a product model dynamically 
changes while the configuration progresses.  

Artificial Problem Design: To empirically 
evaluate the scalability of our approach, we created 
130 artificial problems. We used a range of 100 to 
4600 with an increment of 500 for the number of 
VPs, and a range from 10 to 250 with an increment 
of 20 for the number of trees. In total we had 10 
options for the number of VPs and 13 options for the 
number of trees and defined 10*13 = 130 artificial 
problems. 

5.1.2 Dependent and Independent Variables 

We used fitness value (FV) as the main dependent 
variable, which is the best fitness value obtained 
after a certain number of generations by an 
algorithm (2000 in our experiments). In addition, we 
used two additional dependent variables: mean 
fitness value (MFVp) for each problem and mean 
fitness value for a specific number of problems 
(MFVps). The independent variables include: type of 
search algorithm (TSA), number of VPs (NVPs), and 
number of trees (NTs).  

For each problem, both NVPS and NTS are fixed. 
MFVp is calculated for each algorithm using the 

formula	ܨܯ ௣ܸ ൌ
∑ ி௏భబబ
೗సభ

ଵ଴଴
. FV is the fitness value of 

one run, while l is the number of runs (100 in our 

experiments). 
For MFVps, there are two situations. With the 

fixed NVPs and various NTs, mean fitness values are 
calculated for each algorithm using the 

formula 	MFV௣௦,௩ ൌ
∑ ∑ ி௏ೡ

భబబ
೗సభ

భయ
೟సభ

ଵଷ∗ଵ଴଴
. FVv is the fitness 

value of one run for a given NVPs. l is the number of 
runs while t is NTs. With the fixed NTs and various 
NVPs, mean fitness values are calculated for each 

algorithm using the formula MFV௣௦,௧ ൌ
∑ ∑ ி௏೟

భబబ
೗సభ

భబ
ೡసభ

ଵ଴∗ଵ଴଴
. 

FVt is the fitness value of one run for a given NTs. l 
is the number of runs while v is NVPs. 

5.1.3 Statistical Tests 

To compare the obtained results of the search 
algorithms, we applied the Wilcoxon signed-rank 
test and the Vargha and Delaney statistics (Arcuri, 
2011). For all pairs, we conducted two samples 
Wilcoxon signed-rank test to obtain a p-value which 
determines the significance of results (with the 
significance level of 0.05). The Vargha and Delaney 
statistics (A෡ଵଶ) was used to calculate the effect size 
measure. If A෡ଵଶ is equal to 0.5, the two algorithms A 
and B are equivalent.  A෡ଵଶ is more than 0.5 implies 
that A has higher chances of obtaining higher fitness 
value than B. To study the correlation between the 
performance of the search algorithms and NVPs as 
well as NTs, we use the Spearman’s rank correlation 
coefficient. ܾܲ݋ݎ	 ൐ |݌|  is used to determine the 
significance of results with a significance level 
0.0001. If ρ is greater than 0, there is a positive 
correlation; otherwise, a negative correlation exists.  

 

Figure 3: MFVs along with NVPs (CMS). 

 

Figure 4: MFVs along with NVPs (Subsea Control). 
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5.1.4 Experiment Execution 

Each configuration problem was repeated 100 times 
for each search algorithm to counter random 
variation. Each algorithm was run up to 2000 
generations and the best FV obtained in the 2000 
generations was recorded.  

5.2 Analyses and Results 

In Section 5.2.1, we report analyses and results for 
the two real-world case studies for answering RQ1-
RQ3. In Section 5.2.2, we present analyses and 
results for the 130 artificial problems for answering 
RQ1-RQ2 and RQ4.  

5.2.1 Results for the Real-World Case Study 

RQ1 and RQ2: We compare RS with AVM, (1+1) 
EA and GA, based on FV for each problem (Table 
2). Notice that the CMS case study has in total 106 
problems and the Subsea Control case study has in 
total 64 problems (Section 5.1.1).  

For the CMS case study, all the three search 
algorithms performed significantly better than RS 
for all the 106 problems (Table 1). A similar pattern 
can be observed for the Subsea Control case study, 
where AVM, (1+1) EA and GA performed 
significantly better than RS for 64, 63 and 63 
problems, respectively. We therefore can answer 
RQ1 as follows: AVM, (1+1) EA and GA 
significantly outperformed RS for most of the 
problems suggesting the search algorithms are 
effective to solve our optimization problem 
compared with RS. 

Regarding RQ2, for CMS, (1+1) EA 
outperformed AVM for 93 problems, out of which 
for 51 problems (1+1) EA performed significantly 
better than AVM. There were no significant 
differences observed for 48 problems. AVM 
performed better than (1+1) EA for 12 problems and 
only for 6 of them AVM significantly outperformed 
(1+1) EA. AVM significantly outperformed GA for 
105 problems and (1+1) EA significantly 
outperformed GA for all the 106 problems. For 
Subsea Control, (1+1) EA significantly 
outperformed AVM for 59 problems and GA for all 
the problems. AVM significantly outperformed GA 
for 62 problems. We therefore can answer RQ2 as 
follows: (1+1) EA is the best search algorithm to 
solve our optimization problem followed by AVM 
and GA. 

RQ3: To answer RQ3, we plot the graphs shown 
in Figure 3 and Figure 4, where for a given NVP 

during the configuration process, the mean fitness 
value is calculated for each algorithm using the 
formula MFVp defined in Section 5.1.2. It is 
important to notice that for CMS and Subsea Control 
there are 106 and 64 problems respectively; the x-
axes in Figure 3 and Figure 4 should have 106 and 
64 data points respectively. To avoid cluttering the 
figures, only some of them are shown on the x-axis 
of the figures. 

Table 2: Results for the Wilcoxon signed-rank and the 
Vargha and Delaney A෡ଵଶstatistics*. 

RQ    Pair of Algorithms 
(A vs. B) 

CMS 
A>B A<B A=B 

1 AVM vs. RS 106/106 0/0 0/0 
(1+1) EA vs. RS 106/106 0/0 0/0 

GA vs. RS 106/106 0/0 0/0 
2 AVM vs. (1+1) EA 6/12 51/93 48/1 

AVM vs. GA 105/106 0/0 1/0 
GA vs. (1+1) EA 0/0 106/106 0/0 

RQ    Pair of Algorithms  
           (A vs. B) 

Subsea Control 
A>B A<B A=B

1 AVM vs. RS 63/64 0/0 1/0 
(1+1) EA vs. RS 64/64 0/0 0/0 

GA vs. RS 63/63 0/1 1/0 
2 AVM vs. (1+1) EA 0/0 59/64 5/0 

AVM vs. GA 62/63 1/1 1/0 
GA vs. (1+1) EA 0/0 64/64 0/0 

* In columns ‘A>B’ and (‘A<B’), the values before the slashes 
are the number of problems that A is significantly better (worse) 
than B, while the values after the slashes are the number of 
problems that A has higher probability to be better (worse) than 
B. Column ‘A=B’ tells that the number of problems that there is 
no difference between A and B. 

For both case studies, as shown in Figure 3 and 
Figure 4 along with the configuration of the VPs, 
(1+1) EA, AVM and GA are consistently better than 
RS, until the value of NVPs reaches less than 30 (for 
CMS) and 15 (for Subsea Control). The reason for 
this may be explained by the dynamic change of the 
forest itself. Along with the configuration of VPs, 
the trees in the forest are becoming smaller and there 
may be fewer trees in the forest. So in order to cover 
as many as possible the remaining VPs, more trees 
are selected, which subsequently leads to higher 
fitness values. In addition, along with the 
configuration, the remaining trees may have a higher 
percentage of manual steps and a higher percentage 
of low weight, both of which contribute to higher 
fitness values. In other words, we think when 
reaching the point of having less number of VPs to 
configure, there is no much space for optimization.  

(1+1) EA and AVM performed in a very similar 
pattern for all the problems. GA performed worse 
than AVM and (1+1) EA when the value of NVPs is 
larger than 70 (for CMS) and 50 (for Subsea 
Control). This is mostly because GA uses both 
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mutation and crossover operators to explore more 
search space as compared to (1+1) EA that uses only 
mutation operator and thus GA needs more 
generations (greater than 2000) to obtain better 
solutions for problems with a large number of VPs.  

We also calculated the Spearman’s rank 
correlation between MVPs for each search algorithm 
with increasing NVPs. Results (Table 3) show that 
for all the algorithms except for RS, along with the 
increase of NVPs, MVPs decreases. Therefore, the 
performance of all the algorithms in terms of finding 
optimal solutions increases. Notice that the results 
are consistent with what we can observe from Figure 
3 and Figure 4 along with the decrease of NVPs, 
MPVs increases in general. Therefore, the 
explanation described above applies to here as well.  

Table 3: Results of the Spearman’s correlation analysis 
with the increasing NVPs. 

Case Study Algorithm Spearman’s ρ Prob>|ρ| 

CMS 

AVM -0.8167 <.0001 
(1+1) EA -0.8156 <.0001 
GA -0.3412 0.0003 
RS -0.2943 0.0022 

Subsea Control 

AVM -0.8756 <.0001 
(1+1) EA -0.8713 <.0001 
GA -0.7966 <.0001 
RS 0.1458 0.2502 

5.2.2 Results for the Artificial Problems 

RQ1 and RQ2: To answer RQ1 and RQ2, we 
compared the selected search algorithms with RS 
and then compared each pair of them based on MFV 
for each algorithm and each of the 130 artificial 
problems. From Table 4, one can see that 1) AVM, 
(1+1) EA and GA significantly outperformed RS for 
most of the artificial problems (RQ1), 2) (1+1) EA 
and AVM significantly outperformed GA for most 
of the problems (RQ2) and 3) AVM is significantly 
better than (1+1) EA for 62 problems while (1+1) 
EA is significantly outperformed AVM for 50 
problems (RQ2).  

RQ4: Recall that RQ4 aims to study the impact 
of the increasing number of VPs and trees on the 

performance of the search algorithms. We therefore 
plot surface plots as shown in Figure 5 for each 
algorithm. In each plot, MFVs decrease when the 
color of curves goes from black to white.  

From Figure 5, we can observe that (1+1) EA 
and AVM performed in a very similar pattern: 
achieving very low MFVs when NTs is over 150 and 
performing worse when NTs is getting smaller. The 
performance of GA is the best when NTs is around 
100. Its performance degraded when NTs increases 
over 150. This might be because more generations 
are required for GA to get better solutions when the 
number of trees is large since the problems are 
getting more complex. The performance of RS 
follows a similar pattern as GA but RS achieved 
much worse MFVs when NTs is over 100 than GA. 

Table 4: Results for the Wilcoxon signed-rank test and the 
Vargha and Delaney A෡ଵଶstatistics. 

RQ 
  Pair of Algorithms 

(A vs. B) 
CMS 

A>B A<B A=B 

1 
AVM vs. RS 122/123 6/7 2/0 

(1+1) EA vs. RS 129/130 0/0 1/0 
GA vs. RS 130/130 0/0 0/0 

2 
AVM vs. (1+1) EA 62/70 50/58 18/2 

AVM vs. GA 111/112 14/16 5/2 
GA vs. (1+1) EA 0/5 120/120 10/5 

When NTs decreases below 100, the 
performance of all the algorithms degrades 
significantly. This might be because along with the 
configuration, the remaining trees may have a higher 
percentage of manual steps and a higher percentage 
of low weight, both of which will make a higher 
fitness value. In other words, we think when 
reaching this point, there will be no much space for 
optimization, as we discussed previously.  

To further analyze the correlation between the 
performance and NTs and NVPs, we conducted the 
Spearman correlation analysis. Results are presented 
in Table 5. For AVM and (1+1) EA, NTs has a 
significant negative correlation with MFVs, 
implying that increasing NTs leads to the 
improvement   of   the   performance  of   these   two 

 

(1+1) EA AVM GA RS 

Figure 5: Surface Plots of MFVs, NVPs and NTs. 
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algorithms.  For GA,  a positive (but not significant) 
correlation was discovered, while a significant 
positive   correlation   was  obtained  for  RS.  When 
looking into NVPs, a significant positive correlation 
with MFVs for (1+1) EA was obtained, implying 
that it increasing NVPs leads to the degradation of 
the performance of (1+1) EA. 

Table 5: Results of the Spearman’s correlation analysis 
with the increasing NVPs and NTs. 

Variable Measure AVM (1+1) EA GA RS 
NTs ρ -1 -1 0.4396 0.5659 

Prob>| ρ | <0.0001 <0.0001 0.1329 0.0438 

NVPs ρ 0.6242 0.7212 0.4545 -0.1152 
Prob>| ρ | 0.0537 0.0186 0.1869 0.7514 

6 OVERALL DISCUSSION 

Based on the results of the empirical study, we 
suggest using either AVM or (1+1) EA together with 
our fitness function to solve the decision-ordering 
problem, since these two algorithms exhibit the best 
performance as compared to the other algorithms.   

Recall that the mechanism of Zen-DO is based 
on ordering dependencies of VPs, which can be 
identified by querying the product line architecture 
and design model and from constraints explicitly 
capturing such dependency information. Therefore, 
if a product line has a larger number of such 
ordering dependencies specified, Zen-DO will 
perform more effectively. In other words, it is 
important to document/specify ordering 
dependencies as product line assets and associate 
them (via suitable mechanisms) to VPs specified in 
the product line architecture and design model in the 
first place, to enable effective, automated decision 
ordering. In our Zen-Configurator tool, the SimPL 
methodology should be used to model the product 
line architecture and design and OCL should be used 
to specify constraints, which can naturally integrate 
with the SimPL model. 

7 THREATS TO VALIDITY 

Regarding construct validity, we applied the 
effectiveness measure: fitness value, which is 
comparable across all the algorithms. In addition, the 
number of generations was used in all the search 
algorithms as the stopping criterion. Random 
variations inherent in the search algorithms are the 
the most probable conclusion validity threat. To 
tackle it, we ran each experiment repeatedly 100 

times to reduce the chance that the results were 
obtained by chance.  

In our experiments, we used only one 
configuration setting for the search algorithms, 
which might form a possible threat to internal 
validity. It is however worth noting that these 
settings conform to common guidelines (Arcuri and 
Fraser, 2011) and our experience of applying search 
algorithms for addressing other software engineering 
optimization problems.   

We ran our experiments on the 130 artificial 
problems of different complexity to test the 
scalability of the algorithms. However, one may say 
that the results may not be generalized to other case 
studies. Such threat to external validity is common 
to all empirical studies. In the future, we plan to 
evaluate our approach with more case studies.  

8 RELATED WORK 

As concluded in (Rabiser et al., 2012, El-Sharkawy 
and Schmid, 2012), an automated configuration 
solution should support product configuration with 
the ultimate objective of improving both the quality 
of configured products and the productivity of a 
configuration process. Especially for CPSs, 
hundreds and thousands of configuration parameters 
with complicated constraints among them have to be 
correctly configured, as reported in our previous 
work (Nie et al., 2013b). Automated solutions for 
configuring CPSs is therefore critically required to 
support, automated consistency checking, decision 
inference, etc., among which decision ordering has 
been recognized as one of the most important 
functionalities. 

8.1 Literature Review 

In (Nohrer and Egyed, 2011), an approach was 
proposed to optimize user guidance during decision 
making with the aim to automatically order 
decisions to minimize user input while giving users 
freedom to make decisions that are most important 
to them. SAT was used to reason about the impact of 
an answer given by a user and the ideal order of the 
remaining decisions. Note that this method considers 
two types of dependencies among questions and 
answers. For CPSs, as we reported in (Nie et al., 
2013b) we encountered very complicated constraints 
as in some cases, configuring a VP is not just 
making a Boolean choice but also providing a value 
or selecting a type.  

The authors of (White et al., 2009) proposed an 
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approach to derive a valid sequence of feature 
selections, while accounting for resource constraints 
such as budgetary constraints, in the context of 
multi-step feature model configuration process, 
which was formally formulated and mapped to CSP. 
CSP solvers were then applied to solve the problem. 
An approach is proposed in (Chen and Erwig, 2011) 
to identify feature selection sequences by 
prioritizing features that have high selectivity, such 
that the overall efficiency of the feature selection 
process can be improved. Each feature is associated 
with a value called selectivity, indicating the impact 
of selecting a feature on the selection and removal of 
other features. Feature models are translated to 
algebraic expressions to compute the selectivity. 
Guo et. al (Guo et al.) proposed a GA based 
approach to automatically optimize feature 
selections with resource constraints such as cost, 
CPU and memory. Evaluation results show that the 
proposed search based approach achieved promising 
optimal solutions. 

Notice that all the above mentioned related work 
address decision ordering issues in the context of 
feature models or decision models. Therefore, 
constraints considered are relatively simple 
dependencies among variabilities. To configure 
CPSs, there exist a large number of complicated 
constraints on VPs with various types, considering 
that a configured product is typically an operational 
CPS system. Methods for decision/feature selection 
cannot meet the needs of configuring CPSs. Zen-DO 
aims to address the similar kind of challenges, but in 
the context of CPSs and because of their enormous 
complexity, we aimed for a scalable optimization 
solution and search algorithms seem to be a proper 
candidate for such a solution. 

To compare with these related work, an approach 
proposed by Sayyad et al. in (Sayyad et al., 2013) is 
most closely related to our work. Their objective is 
to support feature model based automated 
configuration of product lines by accounting for user 
preferences. Five optimization objectives were 
defined and implemented, including minimizing rule 
violations, the number of deselected features, and 
the number of features that was not used before, 
known defects and cost. With these five objectives, 
the author investigated a series of well-known multi-
objective evolutionary optimization algorithms and 
concluded, based a set of extensive and well-
designed experiments, that search algorithms in 
SBSE should be carefully selected and tailored for 
studying complex product line 
configuration/decision space. 

 

8.2 Configuration Tool Review 

We reviewed 16 product configuration tools, among 
which six of them provide decision ordering support: 
Pure::Variants (Beuche, 2008), Dopler (Dhungana et 
al., 2011), Covamof (Sinnema et al., 2004), SPLOT 
(Mendonca et al., 2009), FMP (Czarnecki et al., 
2005) and Questionnaire (La Rosa et al., 2009). We 
classify the approaches for these tools into three 
categories: User Defined, Dependency Based and 
Depth First approaches. 

The User Defined approach relies on users to 
predefine configuration sequences. Some modeling 
methodologies have feature attributes (FMP and 
Pure::variants) or specific annotations (Covamof 
using Procedural Knowledge (Hotz et al., 2004)) to 
facilitate the specification of such additional 
information on top of variability models (mostly 
feature models). The Dependency Based ordering 
approach relies on the dependency or constraints 
defined as part of the product line models to derive 
valid configuration sequences of VPs. Dopler, 
Questionnaire and SPLOT implement this approach. 
The Depth First strategy is implemented in FMP to 
guide the configuration process by traversing feature 
models with a predetermined order (depth-first). 
Note that one of them implemented algorithms to 
minimize manual configuration steps. 

El-Sharkawy and Schmid (El-Sharkawy and 
Schmid, 2012) categorized configuration problems 
into several categories, among which ensuring 
correct configuration is considered as the one that 
received the most attention in the past. To ensure 
correct configuration, different approaches have 
been taken, including validation of (partial) 
configurations, optimization based on, e.g., 
minimizing costs of resulting systems, value 
propagation to reduce the number of manual 
configuration steps, root analysis support for invalid 
configurations, and dependency based prioritization 
of configuration sequences. Our work follows into 
the last category of minimizing the amount of work 
that needs to be done by recommending a 
configuration ordering to users. Several heuristics 
based on analyzing dependencies among variabilities 
are summarized in the paper: 1) analyzing the 
impact of a decision on possible products that can be 
derived based on the current configuration 
(Benavides et al., 2005), 2) identifying local feature 
selection decisions to make such that reducing the 
impact of a decision on other parts of the feature 
hierarchy (Czarnecki and Kim), and 3) configuring 
most constraining decision first to reduce the amount 
of decisions to make manually. 
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According to the study of El-Sharkawy and 
Schmid (El-Sharkawy and Schmid, 2012), Dopler 
(Rabiser et al., 2007) is the only tool that 
implemented the heuristic: “most constraining 
decisions” should be configured first with the aim to 
minimize the number of decisions that must be made 
manually and therefore reducing the overall 
configuration effort. Our solution also includes this. 

9 CONCLUSIONS 

Due to the enormous complexity of Cyber-Physical 
Systems (CPSs), manual configuration of products 
based on a large number of various types of 
constraints in CPSs is a complicated and error prone. 
However, not all the steps in the configuration can 
be automated and some decisions must be taken by 
users. To this end, in this paper, we presented our 
search-based approach to identify an optimal set of 
decisions with the objectives to reduce overall 
manual configuration steps, configure most 
constraining decisions first, and satisfy ordering 
dependencies among VPs to the maximum extent. 
This objective was implemented as a fitness function 
used by the search algorithms to find an optimal 
solution. We empirically evaluated four search 
algorithms with the fitness function on two real-
world case studies and 130 artificial problems. 
Results show that Alternating Variable Method 
(AVM) and (1+1) Evolutionary Algorithm (EA) 
significantly outperformed the others. 
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