
Assessing Facial Expressions in Virtual Reality Environments

Catarina Runa Miranda and Verónica Costa Orvalho
Instituto de Telecomunicações, Universidade do Porto, Porto, Portugal

Keywords: Facial Motion Capture, Emotion and Expressions recognition, Virtual Reality.

Abstract: Humans rely on facial expressions to transmit information, like mood and intentions, usually not provided by
the verbal communication channels. The recent advances in Virtual Reality (VR) at consumer-level (Oculus
VR 2014) created a shift in the way we interact with each other and digital media. Today, we can enter a
virtual environment and communicate through a 3D character. Hence, to the reproduction of the users’ facial
expressions in VR scenarios, we need the on-the-fly animation of the embodied 3D characters. However,
current facial animation approaches with Motion Capture (MoCap) are disabled due to persistent partial oc-
clusions produced by the VR headsets. The unique solution available for this occlusion problem is not suitable
for consumer-level applications, depending on complex hardware and calibrations. In this work, we propose
consumer-level methods for facial MoCap under VR environments. We start by deploying an occlusions-
support method for generic facial MoCap systems. Then, we extract facial features to create Random Forests
algorithms that accurately estimate emotions and movements in occluded facial regions. Through our novel
methods, MoCap approaches are able to track non-occluded facial movements and estimate movements in
occluded regions, without additional hardware or tedious calibrations. We deliver and validate solutions to
facilitate face-to-face communication through facial expressions in VR environments.

1 INTRODUCTION

In the last two decades, we lived a revolution of global
digital interactions and communication between hu-
mans (Jack and Jack, 2013). We erased geographic
barriers and started communicating with each other
through phones, computers and, more recently, in-
side virtual environments using Virtual Reality (VR)
headsets. Oculus VR company was the responsible
by bringing this hardware to consumer-level making
this way of interaction more appealing to common
users (Oculus VR 2014). However, VR communi-
cations remain a challenge. Human communication
strongly rely on a synergistic combination of verbal
(e.g. speech) and non-verbal (e.g. facial expressions
and gestures) signals between interlocutors (Jack and
Jack, 2013). Past communication technologies, like
phones and computers, adopted the image stream (e.g.
webcams) coupled with speech to transmit both sig-
nals creating more realistic and complete experiences
(Lang et al., 2012). In VR scenarios, we cannot use
image stream since we are interacting with the vir-
tual world embodied in 3D characters (Biocca, 1997;
Slater, 2014). As result, the demand for on-the-fly al-
gorithms for 3D characters animation and interaction
is even higher. Ahead of unlocking both communica-

tion channels (i.e. verbal and non-verbal), the believ-
able animation of 3D characters using user’s move-
ments enhance the three components of the sense
of embodiment in VR environments: self-location,
agency and body ownership (Biocca, 1997; Kilteni
et al., 2012). Even with technological advances in
Computer Vision (CV) and Computer Graphics (CG),
the reproduction of human’s facial expressions as fa-
cial animation of 3D characters is still hard to achieve
(Pighin and Lewis, 2006). To automatise facial an-
imation, facial Motion Capture (MoCap) has been
widely used to trigger animation (Cao et al., 2014;
von der Pahlen et al., 2014; Cao et al., 2013; Li et al.,
2013; Weise et al., 2011). However, these approaches
are not suitable for consumer-level VR applications,
requiring or expensive setups (von der Pahlen et al.,
2014), manual complex calibrations (Cao et al., 2013;
Li et al., 2013; Weise et al., 2011) or do not support
the persistent partial occlusion of the face produced
by VR headsets (Cao et al., 2014).

To overcome the tracking problem created by per-
sistent partial occlusions, Li et al. (Li et al., 2015)
proposed a hardware based solution using a RGB-D
camera for capture and strain gauges (i.e. flexible
metal foil sensors) attached to VR headset to mea-
sure the upper face movements that are occluded. But
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again, this approach is not suitable for general user.
It requires a complex calibration composed by hard-
ware calibration to user and a blendshapes calibra-
tion to trigger animation. At the moment, this is the
unique on-the-fly facial animation with MoCap solu-
tion compatible to VR environments.
Contributions: This work delivers and validates
consumer-level real-time methods for: (i) facial Mo-
Cap method for persistent partial occlusions created
by VR headsets and (ii) facial expressions prediction
algorithms of occluded face region using movements
tracked in non-occluded region. Compared to litera-
ture, we reduce user-dependent calibration and hard-
ware requirements, requiring only a common RGB
camera for capture. Our methods make current fa-
cial MoCap approaches compatible to VR environ-
ments and enable the extraction of key facial move-
ments of bottom and upper face regions. The move-
ments tracked and emotions detected can be com-
bined to: trigger on-the-fly facial animation, enabling
non-verbal communication in VR scenarios; as input
for emotion-based applications, like emotional gam-
ing (e.g. Left 4 Dead 2 by Valve).

2 BACKGROUND

In this section, we aim to study the literature re-
garding two different topics: (i) facial MoCap solu-
tions for persistent partial occlusions created by VR
Head Mounted Displays (HMD) and (ii) partial oc-
clusions impact in facial expressiveness. The first
topic presents state of the art facial MoCap solutions
to overcome the persistent occlusions’ issue. Then, in
(ii), we explore how these occlusions restrict face-to
face communication and their impact in face expres-
siveness. By the end, we search for a connection be-
tween occluded and non-occluded facial parts used as
guide for methodology definition.

2.1 Persistent Partial Occlusions:
A Today’s Problem

In literature, we are able to find several promising
solutions for real-time automatic facial MoCap (Cao
et al., 2014; von der Pahlen et al., 2014; Cao et al.,
2013; Li et al., 2013; Weise et al., 2011). However,
the arise of VR commercial approaches of consumer-
level HMD’s (Oculus VR 2014), raised a new issue:
the real-time automatic tracking of faces partially oc-
cluded by hardware (i.e. persistent partial occlusions
of face) (Slater, 2014). Current MoCap approaches
adopt model-based trackers, which produce cumula-
tive errors in presence of persistent partial occlusions

(Cao et al., 2014). Therefore, due to the absence of
VR devices in mass-market, this issue was almost ig-
nored for years. This resulted in a lack of technolog-
ical solutions for face-to-face communication for VR
environments. Only in 2015, Li et al. (Li et al., 2015)
highlighted this problem and proposed a hardware
based tracking solution. This solution uses an RGB-D
camera combined with eight ultra-thin strain gauges
placed on the foam liner for surface strain measure-
ments to track upper face movements, occluded by
the HMD. The first limitation of this approach is the
long initial calibration required to fit the measures to
each individual’s faces using a training sequence of
FACS (Ekman and Friesen, 1978). Also, in subse-
quent wearings by the same person, a smaller cali-
bration is needed to re-adapt the hardware measures.
This training step allows the detection of user’s up-
per and bottom face expressions and activate a blend-
shape’s rig containing the full range of FACS shapes
(Ekman and Friesen, 1978). Besides the manipula-
tion complexity, the solution also presents drifts and
decrease of accuracy due to variations in pressure dis-
tribution from HMD placement and head orientation.
As consequence, HMD straps positioning influence
eyebrows’ movement detection (Li et al., 2015). Li
et al. solution is currently the only one available to
overcome the persistent partial occlusions issue, mak-
ing this an open research topic in CV algorithms for
facial MoCap.

2.2 Partial Occlusions and
Expressiveness

Everyday, humans’ communication use facial expres-
sions and emotions to transmit and enhance informa-
tion not provided by speech (Lang et al., 2012). Even
through technology, we always search for a way to use
the non-verbal communication channel. As example,
using video stream of our faces; virtual representa-
tions, like emotion smiles, cartoons or 3D characters
with pre-defined facial expressions, etc. Understand-
ing facial expressions and improve their representa-
tion in 3D characters is one of the key challenges of
CG and plays an important role in digital economy
(Jack and Jack, 2013). This role is even more relevant
now, with recent advances in VR communications at
consumer level (Biocca, 1997). But how can we use
the common solutions of facial animations, like Mo-
Cap, if user’s face is occluded? Are we able to repre-
sent faces using information only from bottom of the
face? To answer these questions, we make a litera-
ture overview regarding several face regions impact
in non-verbal communication. The goal is to under-
stand how a partial occlusion of the face affects com-
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munication. We also researched for a relationship be-
tween occluded and non-occluded facial parts through
emotion-based and biomechanics studies. This infor-
mation was used to build one of this work hypothesis.

In a study about face perception (Fuentes et al.,
2013), we concluded that humans have independent
shape representations of upper and bottom parts of
the face. Similar conclusions are found in emotion
perception’s literature, where mouth and eyes play
different roles (Eisenbarth and Alpers, 2011; Lang
et al., 2012; Bombari et al., 2013). In (Eisenbarth and
Alpers, 2011; Bombari et al., 2013) it is shown that
according to the emotion detected participants used
information from eyes, or mouth or both. More pre-
cisely, in happy expressions participants used infor-
mation from the mouth; for sad and angry, from eyes;
and to fear and neutral, both mouth and eyes are used.
For additional information about non-verbal commu-
nication, we forward the reader to (Lang et al., 2012).
Taking these statements into account, if we occlude
certain region of the face, face-to-face communica-
tion is affected and we may not be able to decode ex-
pressions properly. Subsequently, the tracking of only
certain facial regions, like mouth, is not enough for
emotion recognition, for proper communication and
to generate believable facial animation of 3D charac-
ters.

From the biomechanical point of view, we know
that facial muscles work synergistically to create ex-
pressions. The muscles interweave with one another,
being difficult to decode their boundaries, since their
terminal ends are interlaced with other muscles. A de-
tailed research about facial anatomy and biomechan-
ics can be accessed at Chapter 3 of the book Computer
Facial Animation (Parke and Waters, 1996). Several
studies in CG applied the biomechanical approach to
create coding systems. These coding systems param-
eterize human face enabling a faster generation of fa-
cial expressions in 3D characters (Ekman and Friesen,
1978; Pandzic and Forchheimer, 2003; Magnenat-
Thalmann et al., 1988). Although, they do not pro-
vide a clear solution for facial expressions estimation
constrained to certain regions of the face. Further-
more, the definition and prediction of facial expres-
sions is even harder when the diversity of facial ex-
pressions is considered. Scott McCloud (McCloud,
2006) explains the infinite possibilities of facial ex-
pressions combinations (i.e. the way mixing any two
of universal emotions can generate a third expression,
which, in many cases, is also distinct and recogniz-
able enough to earn its own name) (McCloud, 2006).

Then, analyzing literature, we are able to attain
that occlusions generated by VR devices affect com-
munication and using only the information of non-

occluded regions is not enough to animate a 3D char-
acter. However, biomechanics and facial animation
coding systems show a connection between the dif-
ferent facial regions and how diverse and complex is
the world of possible expressions. Using these state-
ments, we describe a novel methodology to overcome
occlusions problem of facial MoCap and then, to as-
sess facial expressions using non-occluded face infor-
mation.

3 METHODOLOGY

The literature overview of previous section allowed us
to formulate the following hypothesis:

to create a method to estimate facial expressions of
upper face and emotions using only bottom face’s

movements.

Therefore, we deliver VR consumer-level meth-
ods that:

• overcomes the persistent partial occlusions issue
in MoCap, making possible the bottom face’s
movements tracking;

• recognizes universal emotions, plus neutral (Ek-
man and Friesen, 1975; Jack and Jack, 2013) us-
ing bottom face’s movements;

• estimates upper face’s movements (i.e. eyebrows
movements) using information tracked from bot-
tom part of the face.

Figure 1 shows the connection between our VR
methods. We start by presenting a method to make
generic MoCap systems compatible to persistent par-
tial occlusions produced by VR headsets. Then, ap-
plying this algorithm, we are able to track prop-
erly the bottom face’s features and use them to de-
velop methods that predict the following facial ex-
pressions: (i) universal emotions, plus neutral (Ekman
and Friesen, 1975; Jack and Jack, 2013) and (ii) eye-
brows movements. Combining aforementioned meth-
ods, we make possible the MoCap of upper and bot-
tom face movements and estimation of facial emo-
tions under persistent partial occlusions created by
VR headsets.

As setup, we suggest the usage of a Head Mounted
Camera (HMC) combined with the VR HMD (see
Figure 2). At first, we justify the adoption of HMC
as capture hardware: When the user is inside the VR
environment he is not aware of the space around him.
The VR devices precisely substitute the user’s sen-
sory input and transform the meaning of their motor
outputs with reference to an exactly knowable alter-
nate reality (Slater, 2014). Hence, the user moves and
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Figure 1: VR methods’ framework.

reacts to impulses from VR environment. If we want
to capture his face, we have to attach a capture device
(i.e. camera) to his body and the device should fol-
low user’s movements (see HMC on Figure 2). It is
not possible to use a static camera, because the user
is not going to be able to place himself in a position
proper for capture. A similar setup was also proposed
by Li et al. (Li et al., 2015), but we removed the strain
sensors.

In the next subsections, we provide a complete de-
scription of the VR methods.

3.1 VR Persistent Partial Occlusions: A
Novel Method

To deploy our occlusion support method for facial
MoCap, we used the following statement: we know
the kind of occlusion created by HMD, so we know
which part of the face is occluded. We also know
that MoCap algorithms fail in these situations because
they use a face model. When the face is occluded this
model starts not to fit since there is not a full face be-
ing captured. As a solution, we use the knowledge

Figure 2: VR setup definition.

Figure 3: VR method: Persistent partial occlusions. From
left to right: calibration image without VR HMD; our
method uses cut point (red circle) to cut image an overlay at
subsequent images: at left, what facial MoCap method see
is a full face and, at right, the real image.

that the region occluded is the upper part of the face
to ”re-create” the whole face.

Our novel method overlays the upper part of the
face captured on a neutral pose during calibration.
Firstly, we assume that the higher visible point of the
face is the nose and define it as cut point (i.e. this
point can be changed to fit the occlusion created by
certain HMD). Then, we detect the cut point with
the MoCap and we cut the upper part of the cali-
bration image (i.e. frame streamed) from the nose
up, and use it to overlay to all the next camera/video
frames. Hence, now the occluded part of the face is
replaced with a static neutral face. The MoCap sys-
tem is now able to detect the features in the combined
half static/ half expressive face (see Figure 3). We
ensure a proper re-creation of a face since we use a
HMC that removes the user’s head movements, i.e.
user’s face is in the same position during calibration
and next streamed images.

3.2 VR Assessing Facial Expressions

During the development of VR facial expressions
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method, we applied face features and machine learn-
ing know-how from our past real-time emotion recog-
nition research (Loconsole et al., 2014). In this novel
method, we set the following goals: real-time emo-
tion recognition of universal emotions (Ekman and
Friesen, 1975) and upper face expressions prediction
under VR scenarios. We aim to track facial expres-
sions ahead of only emotions, in order to get a wide
change of facial expressions and better cover and rep-
resentation of the diversity of faces (McCloud, 1993).
In opposition to the emotion classification method
(Loconsole et al., 2014), where we needed to reduce
the number of features tracked, in VR scenarios we
have to maximize the information tracked in the bot-
tom part of the face. Therefore, the feature extraction
method should be able to retrieve enough information
to allow an accurate prediction of facial expressions
by the machine learning algorithm.

As a solution, we propose to use all the features
tracked of bottom face region (see Figure 4 blue rect-
angle) and apply a geometrical features extraction al-
gorithm. This algorithm is defined as the Euclidean
distance between neutral face features (stored during
calibration step of previous persistent partial occlu-
sions method) and current frame (i.e. instant in time)
features. Summarizing, to each feature tracked p in
certain instant i, we calculate the distance D(pi, pc):

D(pi, pc) =

√
((pi(x)− pc(x))2 +(pi(y)− pc(y))2

‖pi− pc‖
,where:

pi is the 2D bottom face feature p at the instant i
in time;

pc is the 2D bottom face feature p of neutral ex-
pression captured during calibration;

‖pi− pc‖ is the norm between pi and pc in Carte-
sian space.

Since the occlusion produced varies according to
VR headset used, we also created machine learning
models to assess facial expressions using the bot-
tom face features information including and exclud-
ing nose features. The bottom face features without
nose feature can be used by the different kinds of
HMD, since the nose region is the one affected by the
device size.

To create the machine learning models to predict
the emotions and upper face expressions, we used the
Cohn-Kanade (CK+) database (Lucey et al., 2010).
CK+ database contains posed and spontaneous se-
quences from 210 participants (i.e. cross-cultural
adults of both genres). Each sequence starts with a
neutral expression and proceeds to a peak expression.
This sequences are FACS coded and emotion labeled.

The transition between neutral and a peak expression
allowed us to detect spontaneous expressions and not
only pure full expressions.

To implement the algorithms, we adopted a
GPU version of Random Forest (Breiman, 2001) of
OpenCV (OpenCV, 2014) to generate respective ma-
chine learning models for real-time prediction. As
facial MoCap testing approach, we deployed the
Saragih et al. (Saragih et al., 2011) system. (see Fig-
ure 4 tracking landmarks in green).

3.2.1 VR Emotion Recognition: Novel Method

As preprocessing stage, we create the Random
Forests model that is used to predict emotions in
real-time (Loconsole et al., 2014). To build the
model for emotion classification, to each database’s
sequence we applied the facial MoCap method and
extracted bottom face features. Using the first frame
of the sequence as neutral expression, to subsequent
frames in the sequence, we calculate the distance
D(pi, pc), between bottom face features of current
frame and neutral expression’s frame. Thus, to train
the machine learning model for emotion recognition
we used aforementioned geometrical extraction algo-
rithm: distance D(pi, pc) of bottom face’s features of
each frame. As response value, to each distance cal-
culated, we used respective CK+ emotion label (see
Figure 4 blue processes).

As observed in the Figure 2, in runtime, we apply
once our occlusions support method and store neutral
face features. This step is only execute one time per
user. After, in runtime, the adapted facial MoCap sys-
tem delivers bottom face’s movements and distance
D(pi, pc) is calculated to each feature p. The group
of distances are used as input in the Random Forests
classifier that predicts the user’s emotion represented
by that distances and respective accuracy’s percent-
age.

3.2.2 VR Facial Expressions Predictor: Novel
Method

To build the upper face expressions model, we also
applied the distance of neutral and expression bot-
tom face features as geometric extraction algorithm.
However, we have to define the movements that we
wanted to predict in order to create specific tags to the
training process. For simplicity, we set as upper face
expressions the prediction of eyebrows movements,
i.e. the detection if eyebrows are going up or down,
and the ”how much” they are moving compared to
a neutral position. This last parameter is measured
as a percentage of movement up/down compared to
neutral expression. Similarly to assumption made in
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Figure 4: VR methods: Expressions predictor training (purple) and Emotion predictor training (blue) with CK+ database.

(Fuentes et al., 2013), we assume symmetry of the
eyebrows movements. To define the tags, we calcu-
lated the Euclidean distance D(pi, pc) between neu-
tral position of eyebrows and the expression positions
in the other frames of the sequence. If the average
of the eyebrows features indicated that they are going
up, we tagged ”up”; the opposite if the eyebrows went
down we tag ”down” (i.e. we used image coordinate
system, so this distance was negative when eyebrows
go up and vice-versa). Simultaneously to each frame
of the sequence tagged we saved the percentage of
movement compared to neutral position (up or down).
As result, to each frame of the sequence of each par-
ticipant in CK+ database we tagged: eyebrows ”up”
or ”down”, plus percentage of movement. In Figure 4
with purple processes, the reader can observe an ex-
ample of method’s framework.

At preprocessing stage, we trained two Random
Forests models with the same input data: the dis-
tances D(pi, pc) between neutral and current bottom
face features; but using one of the following response
values:

• ”up” and percentage of movement, if eyebrows
are rising

• ”down” and percentage of movement, if eyebrows
are descending

, to each frame of each sequence of CK+ database.
Since we are using a GPU approach of the classi-

fier, with high computational performance, to max-
imize the prediction accuracy of eyebrows move-
ments, we trained two models: one to predict the rise
movement and, other, to predict the opposite. In run-
time, we apply the defined geometrical features ex-
traction to the bottom face’s features tracked by the
adapted MoCap. The extracted features are used as
input in both Random Forests classifiers, to retrieve
one of the predictions:

1. eyebrows ”rising” and percentage of movement;

2. eyebrows ”descending” and percentage of move-
ment.

Since we are using two different classifiers, there is
a probability of confusion of both models return si-
multaneously an ”up” and ”down” movement. As a
solution, our method compares the accuracies of pre-
diction from the two classifiers’ predictions, and the
result delivered is the one with higher accuracy.

4 RESULTS AND VALIDATION

In this section, we show the results and statistical val-
idation of the methods proposed. Statistical analy-
sis was performed using R software (R Core Team,
2013).

4.1 VR Persistent Partial Occlusions

To test our occlusions method, we applied it to
Saragih et al. (Saragih et al., 2011) and Cao et al.
(Cao et al., 2014) MoCap systems (see Figures 5 and
6, respectively). At the Figure 7, we test a generic
partial occlusion created by a piece of paper.

As observed in the Figures 5, 6 and 7, our
occlusion-support method adapts to MoCap systems
making them compatible to persistent partial occlu-
sions. The ”paper” test case represented a generic
occlusion created by a random VR device. As con-
clusion, our method is not only adaptable to MoCap,
but it could be also used to generic partial occlusions
created by different VR HMD’s.

4.2 VR Assessing Facial Expressions

We divided the validation of our prediction methods
in two steps: (i) statistical validation and (ii) visual
validation.

To validate statistically our machine learning clas-
sifiers we adopted a k-Fold Cross Validation (k-Fold
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Figure 5: VR method results: Persistent Partial Occlusions
method applied to Saragih et al. (Saragih et al., 2011) Mo-
Cap. The real image (left), our method result and what Mo-
Cap processes (middle) and final result from our method
(right).

Figure 6: VR method results: Persistent Partial Occlusions
method applied to Cao et al. (Cao et al., 2014) MoCap.

Figure 7: VR method results: Persistent Partial Occlusions
method applied to Cao et al. MoCap algorithm (Cao et al.,
2014) to overcome a general occlusion created by a piece of
paper.

CRM) with k=10 (Rodriguez et al., 2010). The k-
Fold CRM, after iterating the process of dividing the
input data in k slices for k times, trains a classifier
with k-1 slices. The remaining slices are used as test
sets on their respective k-1 trained classifier, allow-
ing us to calculate the accuracy of each one of the
k-1 classifiers. The final accuracy value is given by
the average of the k calculated accuracies. Though, to
each method we analyze k-Fold CRM accuracy to the
methods under different scenarios. We highlight that
this validation procedure ensures that the test dataset
is not the same of the training dataset. Therefore,

prediction accuracies are not calculated with test data
contained in the training dataset.

Furthermore, we provide a statistical analysis of
sensitivity versus specificity and positive versus neg-
ative predictive value (i.e. pred. in Tables) (Parikh
et al., 2008). The sensitivity measures the perfor-
mance of the classifier in correctly predicting the
actual class of an item, while specificity measures
the same performance but in not predicting the class
of an item that is of a different class. Summariz-
ing, sensitivity and specificity measure the true pos-
itive and true negative performance, respectively. We
added the positive and negative predictive value anal-
ysis because these values reflect the probability that
a true positive/true negative is correct given knowl-
edge about the prevalence of each class in the data
analyzed.

By the end of this section, we validated visually
our VR methods regarding: occlusions, emotion and
facial expressions prediction. The visual validation
data was acquired in our laboratory and is not part
of the training dataset (learning made CK+ database).
The visual data was not acquired with HMC, but we
asked to the participants to avoid extreme head move-
ments. As result, we were able to test our VR method
of occlusion-support and the facial expressions meth-
ods simultaneously.

4.2.1 VR Emotion Recognition

Using the k-Fold CRM, we executed a method’s vali-
dation to two emotion recognition scenarios: (i) six
universal emotions of Ekman and Friesen (Ekman
and Friesen, 1975), plus neutral; (ii) four universal
emotions of Jack (Jack and Jack, 2013), plus neu-
tral. The six universal emotions (Ekman and Friesen,
1975) are the commonly used and accepted by liter-
ature studies. However, recent advances in psychol-
ogy of the emotions show that these emotions are not
reproducible throughout different cultures. The non-
universality of Ekman’s emotions is explored by the
survey (Jack and Jack, 2013). This complete study
defends that only a subset of the six ”universal” emo-
tions is universally recognized, i.e. Joy/Happy, Sur-
prise, Anger and Sad/Sadness. This subset excludes
fear and disgust, since these emotions present low
recognition cross-culturally being biologically adap-
tive movements from the emotions surprise and anger,
respectively (Jack and Jack, 2013).

Therefore, the Table 1 shows the k-Fold CRM ac-
curacies to the two scenarios.

In the Table 1, we observe an increase of the accu-
racy detection when recognizing four emotions, com-
pared to six emotions classification. This result is not
surprising, since we are reducing the number of emo-
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Table 1: k-Fold CRM Accuracy comparison to scenario (i) and to the scenario (ii). Results in percentage (%).

Emotions k-Fold Accuracy (%) 95% Confidence Interval
Six (Ekman and Friesen, 1978) 64.80 [61.72;67.79]

Four (Jack and Jack, 2013) 69.07 [65.59;72.40]

tions predicted. In addition, we detect that the bottom
features of the face allow a weak recognition of face
emotions, resulting in accuracies lower than 70%.

More in detail, we report in the Tables 2 and 3,
a statistical analysis of each emotion recognition ob-
tained with Random Forests classifier to scenario (i)
and (ii), respectively.

Both statistical analysis resulted in a p-value lower
than 2.2× e−16 to a significance level of 5%, which
validates our method’s hypothesis: classifying the
six/four universal emotions using bottom of face fea-
tures tracking. Specifically, to scenario (i) at the Table
2, we observe an overall low sensitivity to emotions
classified (with exceptions to Joy/Happy and Neu-
tral). The opposite is observed to specificity. This
indicates that the method does not have high accu-
racy to detect a certain class, however, does not pre-
dict incorrectly. The predictive values weighted us-
ing information about the class prevalence in popu-
lation, show an overall increase of accuracy for true
positive and maintain to negative. Therefore, as ex-
ample to Surprise, despite our classifier only being
able to positively identify surprise in 59.40% of the
time there is a 71.82% chance that, when it does, such
classification is correct. Looking to Table 3, com-
pared to previous results of scenario (i) at Table 2,
we observe an increase of sensitivity, while maintain-
ing an high accuracy of specificity. In general, the
same is observed in positive and negative predictive
values. This is expected, since decreasing the number
of classes of emotions will decrease the degree of con-
fusion that lead to a better split between classes, re-
sulting in a better emotion recognition method. These
results confirm the statement of Background section,
i.e. bottom face features provide incomplete informa-
tion about face expression of emotions. Though, our
method presents better performance when four uni-
versal emotions (Jack and Jack, 2013) are classified.

4.2.2 VR Facial Expressions Predictor

To analyze and validate the VR facial expressions pre-
dictor, we executed the k-Fold cross-validation to the
classifier eyebrows ”rising” and to classifier eyebrows
”descending”. Taking into account the variance of
nose tracking with the type of HMD used, we pro-
pose to study the influence of tracking these features
(subset S1) and not tracking the nose features (subset
S2) in the prediction of eyebrows’ movements. Av-

erage K-Fold CRM accuracies and respective confi-
dence intervals can be accessed in the Table 4.

In the Table 4, we observe a small decrease of ac-
curacy when the nose features tracking is removed.
Although, the confidence intervals show that this de-
crease is only significant in eyebrows ”up” detection.
Our method allows an high performance of eyebrows
”up” estimation (at least, 85%) compared to eyebrows
”down” estimation (at least, 66%). The different re-
sults arise from the fact that we are using an emo-
tion database for training, where there is more data
describing the ”rising” movement than the opposite
(i.e. only anger and sadness emotions usually present
this facial expression behavior (Ekman and Friesen,
1978)).

Similarly to emotion recognition method,
we present the statistical analysis of sensitiv-
ity/specificity and positive/negative predictive values
to both eyebrows movements using the subsets S1
and S2.

Both p-values of further analysis are lower than
the significance level (i.e. p-value equal to 2.2×
e−16 < 0.05 ). Therefore, both methods are suit-
able for eyebrows movement estimation using bottom
face’s movements. Table 4 shows that the method is
able to classify the eyebrows ”up” movement accu-
rately, with exception for specificity using the subset
S2. So, the removal of nose features tracking leads,
essentially, to a decrease in accuracy of the classifier
in not giving incorrect predictions. However, when
we take in to account the prevalence of the class in
population, the overall accuracy of prediction to both
positive and negative values increase, presenting val-
ues above 84.04%.

Table 6 contains the statistical analysis to the pre-
diction of eyebrows ”descending” movement with
(S1) and without (S2) nose features tracking.

Observing the Table 6, we observe that our
method predicts correctly the ”descending” move-
ments of the eyebrows, at least, 73.18% of the time
and does not predict incorrectly this movements in
at least, 63.97% of the time. The lower values
are obtained to the subset S2, however, the differ-
ences between subsets performance are not signifi-
cant. Similar behavior is beheld taking into account
the prevalence of the class in the population. The pos-
itive/negative predictive values are not significantly
different between sensitivity/specificity. As expected
by previous k-Fold CRM results, prediction of the
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Table 2: Statistical Analysis of scenario (i) - Results in percentage (%).

Anger Disgust Fear Joy Sadness Surprise Neutral
Sensitivity 53.15 39.44 26.09 81.29 12.70 59.40 90.80
Specificity 86.55 97.70 95.84 95.17 99.13 96.35 85.39
Positive pred. 40.21 57.14 39.34 75.90 50.00 71.82 75.51
Negative pred. 91.56 95.40 92.62 96.45 94.31 93.81 94.92

Table 3: Statistical Analysis of scenario (ii) - Results in percentage (%).

Anger Joy Sadness Surprise Neutral
Sensitivity 75.50 77.85 13.80 68.75 80.09
Specificity 76.16 95.14 99.07 98.39 91.34
Positive pred. 45.06 81.46 66.67 88.51 80.44
Negative pred. 92.31 94.00 89.52 94.59 91.16

Table 4: k-Fold CRM Accuracy comparison facial expressions assessed (Eyebrows Up or Down) with subset S1 and S2.
Results in percentage (%).

Eyebrows movements k-Fold Accuracy(%) 95% Confidence Interval
Up S1 91.47 [89.76;92.98]
Up S2 87.02 [84.97;88.89]

Down S1 70.63 [67.99;73.18]
Down S2 69.13 [66.40;71.76]

Table 5: Eyebrow Up prediction - Statistical Analysis to
subsets S1. Results in percentage (%).

Eyebrows Up S1 S2
Sensitivity 97.34 96.27
Specificity 71.79 59.18

Positive pred. 92.04 87.65
Negative pred. 92.31 84.06

Table 6: Eyebrow Down prediction - Statistical Analysis to
subsets S1. Results in percentage (%).

Eyebrows Down S1 S2
Sensitivity 77.13 73.18
Specificity 62.73 63.97

Positive pred. 71.57 72.09
Negative pred. 69.28 65.23

”descending” movement presents lower performance
compared to prediction of the opposite movement.
Again, this result occurred due to the low prevalence
of the ”down” class in population. This statement is
confirmed by the lower influence shown in positive
and negative predictive values when compared to sen-
sitivity and specificity, respectively.

Summarizing, our methods of facial expressions
prediction are suitable for the estimation of eyebrows
movements using features from the bottom of the
face, specially in estimation of the ”rising” move-
ment. This conclusion corroborates the hypothesis of
this work: our results traduce a connection between
bottom and upper face behaviors.

4.2.3 VR Assessing Facial Expressions: Visual
Validation

Applying the methods to videos where the partici-
pants expressed emotions (Ekman and Friesen, 1975),
we are able to check visually the performance of
the methods: occlusions support, emotion recogni-
tion and expressions prediction. We chose a non-VR
scenario in order to verify if the upper face move-
ments and emotions predicted (using only bottom
face’s movements) match the original facial expres-
sions. Results can be observed in the Figures 8, 9, 10
and 11.

Looking throughout the Figures, we verify that
our occlusion method is able to ”re-create” the face
even not using a HMC. Regarding emotion recogni-
tion using only the facial features (green dots), in the
Figure 8, 9 and 10, we show three examples of cor-
rect classification. Figure 11 presents an example of
a wrong emotion recognition. The classifier returned
Anger when the user’s emotion label of the video was
Sad. This confusion is predicted since the bottom fea-
tures inherent to Anger and Sad emotions are identical
(Ekman and Friesen, 1975).

Regarding the facial expressions prediction
method, in the Figures 8 and 11 we observed that
the algorithm correctly estimates eyebrows ”down”,
which is confirmed by the original images. The
same is detected in the Figure 9 for eyebrows ”up”
predictor. Moreover, in the Figure 10, comparing
eyebrows of image analyzed and original image, we
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Figure 8: VR Assessing Facial Expressions: Emotion
Recognition result (blue) and Expression Predictor result
(green). Check that our emotion and prediction match orig-
inal image eyebrows movements (green box).

Figure 9: VR Assessing Facial Expressions: Emotion
Recognition result (blue) and Expression Predictor result
(red). Check that our emotion and prediction match orig-
inal image eyebrows movements (green box).

observe no movement, which traduced in a correct no
estimation of movement from both predictors.

5 CONCLUSIONS

This work delivers VR consumer-level methods to
achieve the three goals: make MoCap systems com-
patible to persistent partial occlusions, real-time
recognition of universal emotions and real-time pre-
diction of upper face movements using bottom face
features tracking. Combining the three methods de-
ployed, we are able to track in real-time facial ex-
pressions from non-occluded and occluded facial re-
gions. The development of these methods lead to im-
provement in the three components of sense of em-
bodiment, i.e. enhances the sense of self-location,
agency and body ownership within the VR environ-
ments (Kilteni et al., 2012).

Analyzing the results, we conclude that the three
goals proposed where achieved. We deliver a method
to make MoCap systems able to track bottom face fea-
tures under generic partial occlusions created by dif-
ferent HMD’s. Note, we do not deliver a method that
is able to overcome generic and unpredicted facial oc-

Figure 10: VR Assessing Facial Expressions: Correct Emo-
tion Recognition result (blue) and no Expression Predictor
result, since there is not movement. Check original image
in green box.

Figure 11: VR Assessing Facial Expressions: Incorrect
Emotion Recognition result (blue) and Expression Predic-
tor result. Check original image to see that Expression Pre-
dictor is correct (green box).

clusions, since we require the knowledge of the area
occluded. Then, using these facial features, we were
able to define methodologies to real-time recognition
of four universal emotions (Jack and Jack, 2013) with
an accuracy of 69.07% and prediction of facial move-
ments in the occluded regions, i.e. eyebrows ”rising”
with accuracy of 91.47% and ”descending” with an
accuracy of 70.63%. The results obtained with the
facial expressions prediction method confirmed our
method’s hypothesis. Therefore, besides bottom fea-
tures of the face being not enough to describe the six
emotions of Ekman and Friesen (Ekman and Friesen,
1975), our predictor of facial expression decode a
connection between bottom face and upper face fea-
tures. As explained in methodology, the combination
of both emotion and expressions tracked/predicted
make us able to access a wide range of facial expres-
sions enabling us to represent the diversity of faces
(McCloud, 1993). This conclusion opens new lines of
research to predict more complex movements of the
face, even when we are not able to track them using
CV algorithms. Furthermore, our methods outputs
enable the real-time animation of 3D characters, since
we deliver information of facial features combined to
emotions, suitable to activate different types of rigs.
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Ahead of 3D characters animation, our methods are
suitable for emotion-based applications, like affective
virtual environments, advertising or emotional gam-
ing.

As future work, we aim to define a transfer al-
gorithm and use movements and emotions estimated
to trigger facial animation. Furthermore, we intend
to study how the estimation of more facial behaviors
information (e.g. forehead and eye movements) and
combination of speech data can improve the anima-
tion and user embodiment in VR environments.
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