Re-parameterization of a Deformation Model for Non-rigid Registration

Van-Toan Cao, Trung-Thien Tran, Denis Laurendeau

Abstract

In this paper we present a method for non-rigid registration of meshes. The method aligns two surfaces of deformable objects by automatically separating the deformation into a single global transformation and other local deformations. The local deformations are found by applying the deformation model proposed by Sumner (Sumner et al., 2007) that previous methods have used to register two surfaces. However, we specify a rigid transformation for each node of the deformation graph using a rotation matrix and a translation vector. With this model, unit quaternions of rotation matrices are paramterized using an homeomorphic relation between the 4D unit sphere and the 3D projective space. Therefore, the number of unknowns is reduced by half compared to the original models based on affine transformations and the optimization process is less complex. We demonstrate the efficiency of the proposed method by aligning the surfaces of data sets without any prior knowledge and assumptions about the deformation between the two surfaces.

References

  1. Allen, B., Curless, B., and Popovic, Z. (2003). The space of human body shapes: reconstruction and parameterization from range scans. ACM Transactions on Graphics, 22(3):587-594.
  2. Amberg, B., Romdhani, S., and Vetter, T. (2007). Optimal step nonrigid icp algorithms for surface registration. In Computer Vision and Pattern Recognition, 2007. CVPR 7807. IEEE Conference on, pages 1-8.
  3. Anguelov, D., Srinivasan, P., Pang, H., Koller, D., Thrun, S., and Davis, J. (2004). The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In Advances in Neural Information Processing Systems 17 [Neural Information Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia, Canada], pages 33-40.
  4. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G. (1999). The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4):349-359.
  5. Bonarrigo, F., Signoroni, A., and Botsch, M. (2014). Deformable registration using patch-wise shape matching. Graphical Models, 76(5):554 - 565. Geometric Modeling and Processing 2014.
  6. Cao, V., Nguyen, V., Tran, T., Ali, S., and Laurendeau, D. (2014). Non-rigid registration for deformable objects. In GRAPP 2014 - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications, Lisbon, Portugal, 5-8 January, 2014., pages 43-52.
  7. Cao, V.-T., Tran, T.-T., and Laurendeau, D. (2015). A twostage approach to align two surfaces of deformable objects. Graphical Models, 82:13 - 28.
  8. Chang, W. and Zwicker, M. (2008). Automatic registration for articulated shapes. In Proceedings of the Symposium on Geometry Processing, SGP 7808, pages 1459- 1468, Aire-la-Ville, Switzerland. Eurographics Association.
  9. Chen, S.-G. and Wu, J.-Y. (2004). Estimating normal vectors and curvatures by centroid weights. Computer Aided Geometric Design, 21(5):447 - 458.
  10. Corsini, M., Cignoni, P., and Scopigno, R. (2012). Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Transactions on Visualization and Computer Graphics, 18(6):914-924.
  11. Dou, M., Taylor, J., Fuchs, H., Fitzgibbon, A., and Izadi, S. (2015). 3d scanning deformable objects with a single rgbd sensor. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  12. Grassia, F. S. (1998). Practical parameterization of rotations using the exponential map. Journal of Graphics Tools, 3(3):29-48.
  13. Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. (2008). Non-rigid registration under isometric deformations. In Proceedings of the Symposium on Geometry Processing, SGP 7808, pages 1449-1457, Aire-laVille, Switzerland. Eurographics Association.
  14. Jian, B. and Vemuri, B. (2011). Robust point set registration using gaussian mixture models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(8):1633-1645.
  15. Li, H., Adams, B., Guibas, L. J., and Pauly, M. (2009). Robust single-view geometry and motion reconstruction. ACM Transactions on Graphics, 28(5):175:1-175:10.
  16. Li, H., Sumner, R. W., and Pauly, M. (2008). Global correspondence optimization for non-rigid registration of depth scans. In Proceedings of the Symposium on Geometry Processing, SGP 7808, pages 1421-1430, Airela-Ville, Switzerland. Eurographics Association.
  17. Li, H., Vouga, E., Gudym, A., Luo, L., Barron, J. T., and Gusev, G. (2013). 3d self-portraits. ACM Transactions on Graphics, 32(6):1-9.
  18. Myronenko, A. and Song, X. (2010). Point set registration: Coherent point drift. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(12):2262- 2275.
  19. Newcombe, R. A., Fox, D., and Seitz, S. M. (2015). Dynamicfusion: Reconstruction and tracking of nonrigid scenes in real-time. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  20. Peyré, G. and Cohen, L. D. (2006). Geodesic remeshing using front propagation. International Journal of Computer Vision, 69(1):145-156.
  21. Rouhani, M., Boyer, E., and Sappa, A. D. (2014). Nonrigid registration meets surface reconstruction. In 3D Vision (3DV), 2014 2nd International Conference on, volume 2, pages 617-624.
  22. Sagawa, R., Akasaka, K., Yagi, Y., Hamer, H., and Van Gool, L. (2009). Elastic convolved icp for the registration of deformable objects. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 1558-1565.
  23. Schmidt, J. and Niemann, H. (2001). Using quaternions for parametrizing 3-d rotations in unconstrained nonlinear optimization. In VISION, MODELING, AND VISUALIZATION 2001, pages 399-406. AKA/IOS Press.
  24. Sumner, R. W., Schmid, J., and Pauly, M. (2007). Embedded deformation for shape manipulation. ACM Transactions on Graphics, 26(3).
  25. Terzakis, G., Culverhouse, P., Bugmann, G., Sharma, S., and Sutton, R. (2012). A recipe on the parameterization of rotation matrices for non-linear optimization using quaternions. Technical report, Center for Robotics and Neural Systems, Plymouth University, Plymouth, UK.
  26. Vlasic, D., Peers, P., Baran, I., Debevec, P., Popovic, J., Rusinkiewicz, S., and Matusik, W. (2009). Dynamic shape capture using multi-view photometric stereo. ACM Transactions on Graphics, 28(5):174:1-174:11.
  27. Zeng, M., Zheng, J., Cheng, X., and Liu, X. (2013). Templateless quasi-rigid shape modeling with implicit loop-closure. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 145- 152.
  28. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. (2004). Spacetime faces: High resolution capture for modeling and animation. ACM Transactions on Graphics, 23(3):548-558.
  29. Zhang, Q., Fu, B., Ye, M., and Yang, R. (2014). Quality dynamic human body modeling using a single low-cost depth camera. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 676- 683.
  30. Zhang, R., Chen, X., Shiratori, T., Tong, X., and Liu, L. (2015). An efficient volumetric method for non-rigid registration. Graphical Models, 79:1 - 11.
  31. Zollhöfer, M., Nießner, M., Izadi, S., Rehmann, C., Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C., and Stamminger, M. (2014). Real-time non-rigid reconstruction using an rgb-d camera. ACM Transactions on Graphics, 33(4):156:1-156:12.
Download


Paper Citation


in Harvard Style

Cao V., Tran T. and Laurendeau D. (2016). Re-parameterization of a Deformation Model for Non-rigid Registration . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 39-49. DOI: 10.5220/0005714300370047


in Bibtex Style

@conference{grapp16,
author={Van-Toan Cao and Trung-Thien Tran and Denis Laurendeau},
title={Re-parameterization of a Deformation Model for Non-rigid Registration},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)},
year={2016},
pages={39-49},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005714300370047},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)
TI - Re-parameterization of a Deformation Model for Non-rigid Registration
SN - 978-989-758-175-5
AU - Cao V.
AU - Tran T.
AU - Laurendeau D.
PY - 2016
SP - 39
EP - 49
DO - 10.5220/0005714300370047