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Abstract: Motion estimation from image data has been widely studied in the literature. Due to the aperture problem,
one equation with two unknowns, a Tikhonov regularization is usually applied, which constrains the estimated
motion field. The paper demonstrates that the use of regularization functions is equivalent to the definition
of correlations between pixels and the formulation of the corresponding correlation matrices is given. This
equivalence allows to better understand the impact of the regularization with a display of the correlation values
as images. Such equivalence is of major interest in the context of image assimilation as these methods are
based on the minimization of errors that are correlated on the space-time domain. It also allows to characterize
the role of the errors during the assimilation process.

1 INTRODUCTION

As well known and extensively discussed in the lit-
erature of image processing, motion estimation from
image data is an ill-posed problem, according to the
Hadamard definition (Hadamard, 1923). This comes
from the fact that only one equation is available, the
optical flow equation (Horn and Schunk, 1981), for
estimating two unknown variables, the horizontal and
vertical components,u andv, of the motion vectorw.

Smoothing of the motion field, according to the
design of Tikhonov regularization terms (Tikhonov,
1963), is often used in the literature in order to get
a unique solution, as seen for instance in the papers
(Nagel and Enkelmann, 1986), (Nielsen et al., 1994)
or more recently in (Werlberger et al., 2010). A huge
literature is available on the subject. Survey papers on
optical flow have been published, as for instance (Sun
et al., 2010) and (Fortun et al., 2015).

An alternative to the Tikhonov regularization
comes from the use of image assimilation methods,
which include, in the estimation process, the available
heuristics on the temporal evolution of the observed
system. The reader can refer, for example, to the
methods presented in (Papadakis et al., 2010), (Ridal
et al., 2011) or in (Béréziat and Herlin, 2011). In the
last few years, a number of such techniques were de-
fined for various contexts of motion estimation from
image sequences.

The data assimilation approach used in the pa-

per is a 4D-Var method, based on the control the-
ory. The foundational paper of Le Dimet and Tala-
grand (Le Dimet and Talagrand, 1986) describes the
computation of the solution of a 4D-Var data assimi-
lation algorithm, thanks to the adjoint method.

The 4D-Var image assimilation, which is applied
in the paper, works as follows. Starting from a back-
ground value, a simulation model is integrated in
time, producing a state vector value at each time step
of the studied temporal interval. At each acquisition
date, the state vector is compared to characteristics
calculated on the image observations. For minimizing
their difference on the whole temporal interval, the
data assimilation method computes an optimal initial
value, named the analysis vector. The whole tempo-
ral trajectory is then obtained by integrating the model
from that analysis value. Section 2 describes the main
mathematical components of the 4D-Var framework.

In order to estimate motion, the 4D-Var approach
defines a cost functionJ, which is minimized for com-
puting the result. This cost function is depending on
the discrepancy between the state vector and the im-
age data, or image characteristics, at acquisition dates.
Regularization terms are often added to that cost func-
tion, as described by Béréziat et al. in (Béréziat and
Herlin, 2011), in order to determine the vectorial sub-
space on which motion is estimated. These regu-
larization terms ensure that, during the minimization
process, the motion field keeps the chosen regularity
properties, which are based on the available knowl-
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edge of the observed system.
Three types of regularization are analyzed in the

paper and given in Section 2, simultaneously with a
discussion of their impact on the estimated motion
field. They concern the gradient of motion, its diver-
gence and its norm.

The core of the paper concerns an extensive dis-
cussion on the interpretation of these three regulariza-
tion terms as correlations between pixels of the image
domain. Some related work has been done, for in-
stance, by Dean S. Oliver in (Oliver, 1998), where
the regularization terms are associated to the inverse
of a covariance matrix. Section 3 demonstrates, in the
context of 4D-Var image assimilation, that the estima-
tion result obtained with the regularization terms and
no correlation between pixels is exactly the same than
the one obtained with specific correlations. The cor-
relation matrices corresponding to the three types of
regularization, on the gradient of motion, on its diver-
gence and on its norm, will be given and discussed.
The equivalence between regularization and correla-
tion allows to visualize their joint impact on the esti-
mation and to get insights on the choice of the param-
eters values, which weight these regularization terms.
The displays of correlation matrices are also given in
Section 3.

1.1 Notations

In the remaining of this introduction, the main math-
ematical notations used in the paper are given.

• Let Ω be an open subset of IR2. Ω is the image
domain on which motion is estimated.

• Let [0,T] be a closed subset of IR, corresponding
to the time interval on which image acquisitions
are available.

• ΩT = Ω × [0,T] defines the studied spatio-
temporal interval, on which image assimilation is
applied.

• A point of the image domainΩ is denoted by:

x =
(
x y

)T
(1)

with x andy corresponding respectively to the ab-
scissa and the ordinate, in a Cartesian system de-
fined onΩ.

• Let w denote the motion function, defined onΩT ,
such that:

w(x, t) =
(
u(x, t) v(x, t)

)T
(2)

with u andv quantifying respectively the values of
motion along the abscissa and the ordinate.

• An image functionI is defined onΩT , with the
same physical properties as the image acquisi-
tions. I is supposed to be transported by the mo-
tion functionw. Consequently, this image func-
tion corresponds to a passive tracer of the motion
function.

• Let introduce the notationX, denoting the state
vector of the observed system, depending onx and
t and defined onΩT by:

X(x, t) =
(
w(x, t) I(x, t)

)T (3)

• The image functionI and both components,u and
v, of the motion fieldw are defined onΩT . For
sake of simplicity, we denoteu the space-time
function, u(t) the field at datet and u(x, t) the
value at pixelx and datet of the image domain
Ω. The same rule is applied for all functions de-
fined onΩT .

• Data assimilation methods are functioning by
comparing a model output with observed values
of the studied system. The observation vectorY
is defined onΩT . Its value at datet and pointx is
Y(x, t). Its components correspond to image ac-
quisitions or to image features computed on these
acquisitions. They are denoted by using the su-
perscript·O. For instance, the image acquisition
is denotedIO. IO(x, t) is the value at datet and
pointx.

• When describing a data assimilation method, pro-
jection operators are needed that are denoted IP.
For instance, IPw is the projection from the space
of the state vector on the space of the motion
fields.

• When defining the formulation of the optimal esti-
mation, error terms, denotedε, are needed. These
error terms will be considered as Gaussian and
zero-mean. They are therefore described by a co-
variance function. The covariance function of the
error term denotedεB is B.

• For describing the implementation, the image do-
mainΩ is discretized but is still denoted with the
same symbol, for sake of simplicity. In the same
spirit, x denotes either the point of the continuous
domain or the pixel of the discrete domain, with
indexesi and j. The same rule is applied for all
quantities,X, Y, u, v, I , ...
The image domain is composed of NΩ pixels.
The state vectorX has NX = 3NΩ components, as
it includes the value of motion and image for each
pixel.
The vectoru has NΩ components, which are the
values ofu at all pixels. The same goes forv and
I .
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The discrete observation vectorY has NY compo-
nents.
The notationt of the continuous time variable is
also kept for the discrete time index.

2 MOTION ESTIMATION AND
REGULARIZATION TERMS

This section summarizes the issue of motion estima-
tion, based on data assimilation methods, as described
for instance in (Béréziat and Herlin, 2011).

The first element to be defined is the Image Model,
expressing the heuristics on the observed system and
on the image acquisitions. The design of this Image
Model depends on the duration of the studied tempo-
ral interval. On a short term, the motion field is usu-
ally considered as stationary, which is mathematically
written as:

∂w
∂t

= 0 (4)

Such simple evolution law has a great potential for
operational applications, as no temporal integration
of the motion field is required:w(t) = w(0) for each
value oft. On a longer duration, this assumption is no
more valid and has to be released. In this paper, mo-
tion is considered as advected by itself. This is written
as:

∂w
∂t

+(w ·∇)w = 0 (5)

It corresponds to the Lagrangian conservation of mo-
tion on the whole trajectory:

dw
dt

(x, t) = 0 (6)

Expressing the motion fieldw with its two compo-
nentsu andv,

w =
(
u v

)T
, (7)

allows to decompose Equation (5) with two partial
differential equations:

∂u
∂t

+u
∂u
∂x

+ v
∂u
∂y

= 0 (8)

∂v
∂t

+u
∂v
∂x

+ v
∂v
∂y

= 0 (9)

Considering the hypothesis that the image bright-
ness is a physical property, which is preserved over
time accordingly to the displacement of objects on the
image domain, leads to:

I(x, t) = I(x+ δx, t+ δt) (10)

Assuming that the displacementδx and the time inter-
val δt are small, Equation (10) is developed, accord-
ingly to Taylor series, into:

I(x+ δx, t+ δt) = I(x, t)+ δx
∂I
∂x

+ δt
∂I
∂t

+ . . . (11)

From Equations (10) and (11), it comes:

∂I
∂t

≈−δx
δt

∂I
∂x

(12)

Therefore, the image brightness is considered trans-
ported by the motion field, which conducts to the op-
tical flow equation:

∂I
∂t

+w ·∇I = 0 (13)

The image assimilation approach, which estimates
X with a 4D-Var algorithm, is then based on the fol-
lowing system of three equations:

∂X
∂t

(x, t)+ IM(X)(x, t) = 0 (14)

X(x,0) = X(b)(x)+ εB(x) (15)

IH(X,Y)(x, t) = εR(x, t) (16)

Equation (14) is the partial differential equation
ruling the temporal evolution ofX(x, t). This equation
comes either from Equations (4, 13) or (5, 13). The
valueX(x, t) is determined, for any datet, from the
initial value X(x,0) and the temporal integration of
the model IM.

Equation (15) expresses the a priori knowledge,
named the background value and denotedX(b)(x),
that is available on the state vector at initial date 0.
An error term,εB(x), is added in order to express
the uncertainty on this a priori knowledge. This error
term is supposed to be Gaussian and zero-mean, with
the covariance function denotedB. The choice of the
background value is depending on the experiment that
is conducted and is described together with the stud-
ied images. However, as the objective is to estimate
the motion field from the image data, no constraint
will be applied for ensuring that the result stay close
to the background value of motion. This background
motion field is only used as a starting point for the it-
erative minimization process. The background of the
image functionI is generally taken as the first acquisi-
tion of the sequence. Equation (15) is then equivalent
to:

I(x,0)− I (b)(x) = εB(x) (17)

where the symbolεB(x) is now used to indicate the
zero-mean Gaussian error on the image component,
associated to its covariance functionB. We assume
that the image error is uncorrelated in space. There-
foreB is a diagonal matrix, whose diagonal values are
denotedσ2.
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Equation (16) is the observation equation that
links the values of the image acquisitions to the state
vector, at each date of the studied interval. In the
paper, the observation vectorY(x, t) is equal to the
observed imageIO(x, t) and IH allows to compare
the image functionI(x, t) to the image acquisitions
IO(x, t). The operator IH is then defined by:

IH(X,Y)(x, t) = I(x, t)− IO(x, t) (18)

The observation equation, Equation (16), then
rewrites:

I(x, t)− IO(x, t) = εR(x, t) (19)

The discrepancy between the image functionI(x, t)
and the acquisitionIO(x, t) is described by the error
εR(x, t) on the image component.εR(x, t) represents
both the acquisition and representativity errors. This
error term is also supposed Gaussian, zero-mean and
uncorrelated withεB. In the paper, the covariance
functionR, associated toεR(x, t), considers no covari-
ance between two locations. ThereforeR is a diagonal
matrix, whose diagonal values are also taken equal to
σ2.

Solving System (14, 17, 19) is equivalent with the
minimization of the error termsεR andεB. This is ob-
tained by designing a cost functionJ, depending on
the control variableX(0), with the following formu-
lation (where the space variablex is suppressed for
sake of clarity):

J(X(0)) =
∫

Ω

(
I(0)− I (b)

)
B(x)−1

(
I(0)− I (b)

)

+

∫

ΩT

(
I(t)− IO)R−1(I(t)− IO) (20)

Three regularization termsR1, R2 and R3 are
added to the cost function of Equation (20). This new
cost function, still denotedJ, is minimized during the
data assimilation process, which estimatesX(0) and
its motion component.

The first regularization term, namedR1, acts on
the norm of the gradient of the motion field. It is de-
signed as follows:

R1(X(0)) = α
∫

Ω
||∇(IPw(X(x,0))) ||2dx (21)

or equivalently:

R1(X(0)) = α
∫

Ω
||∇w(x,0)||2dx (22)

R1 ensures the spatial smoothness of the estimation.
It is weighted by the parameterα.

When working on the issue of sea surface circula-
tion, the estimated motion field should be divergence
free, due to the incompressibility property. In other

applications, even if the divergence is non null, its
value should be small as aliasing effects could appear,
during the temporal integration of the image model, if
the divergence is high. A second regularization term
R2, acting on the divergence, is then added to the cost
functionJ:

R2(X(0)) = β
∫

Ω
[div(IPw(X(x,0)))]2dx (23)

or equivalently:

R2(X(0)) = β
∫

Ω
[div(w(x,0))]2dx (24)

where:

div(w(x,0)) =
∂u
∂x

(x,0)+
∂v
∂y

(x,0) (25)

A regularization term acting on the norm of the
motion field is also included in the functionJ, in order
to avoid having spurious high values ofw. This term
R3 is defined by:

R3(X(0)) = γ
∫

Ω
||IPw(X(x,0))||2dx (26)

or equivalently:

R3(X(0)) = γ
∫

Ω
||w(x,0)||2dx (27)

Let sum up these three regularization into a global
termR , defined as:

R = R1+R2+R3 (28)

and depending on the initial valueX(0) through its
motion componentw(0).

Having defined the regularization terms, the next
section will discuss and illustrate their significance
and action during the estimation process.

3 SIGNIFICANCE OF THE
REGULARIZATION

The regularization terms, which are included in the
cost function are given, with a variational formula-
tion, in Equations (22, 24, 27). Keeping in mind that

w =

(
u
v

)
, it is possible to rewrite the formulation of

R1 Equation (22), as:

R1(X(0)) = α
∫

Ω

∂u
∂x

(x,0)2+
∂u
∂y

(x,0)2

+
∂v
∂x

(x,0)2+
∂v
∂y

(x,0)2 (29)
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The formulation ofR2 in Equation (24) is rewritten
as:

R2(X(0)) = β
∫

Ω

(
∂u
∂x

(x,0)+
∂v
∂y

(x,0)
)2

(30)

Last,R3 of Equation (27) is equal to:

R3(X(0)) = γ
∫

Ω
u(x,0)2+ v(x,0)2 (31)

When implementing the method on a discrete the
image domainΩ, the derivatives alongx and y are
computed by filtersDx andDy , whose values depend
on the chosen discretization schemes. If the deriva-
tives are, for instance, approximated with a forward
scheme, the filterDx is defined by:

Dx =




0 0 0
0 −1

dx
1
dx

0 0 0


 (32)

and the filterDy by:

Dy =




0 1
dy 0

0 −1
dy 0

0 0 0


 (33)

The derivative filters being applied on the whole do-
main, let introduce the matricesDx and Dy, which
compute the discrete derivatives at every pixel, re-
spectively along the directionsx and y. By defini-
tion, Dx andDy are Toeplitz matrices and their coef-
ficients along descending diagonals are constant. For
instance,Dx has the value−1

dx on its main diagonal and
the value 1

dx on the first above diagonal:

Dx =
1
dx




−1 1
−1 1

−1 1
...

...
−1 1

−1




(34)

It is then possible to rewrite the discrete formulation
of each regularization term from these notations.
The discrete version of Equation (29) is:

R1(X(0)) = α
(
〈Dxu , Dxu〉+ 〈Dyu , Dyu〉

+ 〈Dxv , Dxv〉+ 〈Dyv , Dyv〉
)

(35)

where〈 f1 , f2〉 denotes the scalar product of the vec-
torsv1 andv2. Equation (30) leads to:

R2(X(0)) = β〈Dxu+Dyv , Dxu+Dyv〉 (36)

Equation (31) is discretized by:

R3(X(0)) = γ
(
〈u , u〉+ 〈v , v〉

)
(37)

Let introduce the vector

(
u
v

)
of size 2NΩ in the

previous scalar products. Let also use the fact that
Dx andDy being matrices with real coefficients, their
adjoint is equal to their transpose. Let furthermore
use the bilinearity of the scalar product. These three
points lead to rewrite the discrete formulation ofR1
in Equation (35) as:

〈(
u
v

)
, α

(
K 0
0 K

)(
u
v

)〉
(38)

with K being defined by:

K = DT
x Dx+DT

y Dy (39)

The discrete formulation ofR2, in Equation (36),
leads to:

〈(
u
v

)
, β

(
DT

x Dx DT
x Dy

DT
y Dx DT

y Dy

)(
u
v

)〉
(40)

Last, the formulation ofR3, in Equation (37), be-
comes: 〈(

u
v

)
, γ

(
II 0
0 II

)(
u
v

)〉
(41)

where II is the identity matrix.
Let denoteC1 the matrix involved in the computa-

tion of R1, Equation (38):

C1 = α
(

K 0
0 K

)
(42)

Let denoteC2 the matrix involved in Equation (40):

C2 = β
(

DT
x Dx DT

x Dy

DT
y Dx DT

y Dy

)
(43)

Let denoteC3 the matrix obtained in Equation (41):

C3 = γ
(

II 0
0 II

)
(44)

Last, let define the matrixC:

C=C1+C2+C3 (45)

=

(
αK +βDT

x Dx+ γII βDT
x Dy

βDT
y Dx αK +βDT

y Dy+ γII

)

The definition ofC leads to the following equality for
the regularization term involved in the cost function:

R (X(0)) =

〈(
u
v

)
, C

(
u
v

)〉
(46)

As R1 (in Equation (22)),R2 (in Equation (24))
and R3 (in qEquation (27)) are positive or null, as
long asα, β and γ are positive, the regularization
value expressed in Equation (28) is also positive or
null. Moreover,R (X(0)) is null if and only if w(0)
is null. As both formulation of the regularization,
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Equations (28) and (46) are equivalent, the matrixC
is symmetric definite positive and can be considered
as the inverse of a covariance matrixBR .

It comes that the two following formulations of
the discrete cost function (where the space and time
indexes are suppressed for sake of clarity) are equiva-
lent:

〈
I(0)− I (b) , B−1

(
I(0)− I (b)

)〉

+ ∑
[0,T]

〈
I − IO , R−1(I − IO)〉+R (X(0)) (47)

and:
〈

X(0)−X(b) , B−1
R

(
X(0)−X(b)

)〉

+ ∑
[0,T]

〈
I − IO , R−1(I − IO)〉 (48)

where the new covariance matrixBR verifies:

B−1
R =

(
C 0
0 B−1

)
(49)

It should be noted that, in Equation (47), only the im-
age componentI (b) of X(b) is involved and is chosen
equal to the first image acquisitionIO(0). On another
hand, in Equation (48), the whole background vector
is involved and defined by:

X(b) =




0
0

I(0)


 (50)

where the image component is the same and the mo-
tion component is given a null value, which provides
the heuristic of smoothness for the motion field. The
error covariance matrixB of the image background
keeps the same value from Equation (47) to Equa-
tion (49).

This concludes the demonstration that the use of
regularization terms is equivalent to the use of a non
diagonal covariance matrixBR in the cost function
minimized for estimating motion.

When implementing the image assimilation
method, the state vectorX(0) is composed of the three
componentsu(0), v(0), andI(0). Each of these com-
ponents is defined on the discrete image domainΩ,
composed of NΩ pixels. Therefore,X(0) has 3NΩ
components. The size of the covariance matrixB
is equal to the square of the size of the state vec-
tor. This would lead to unaffordable memory costs
if one wants to store the whole matrix. For instance,
for a 100×100 pixels image, this leads to a 54 giga-
bytes matrix. However, the inverse matrix designed
in Equation (49) is sparse and contains a high number
of zero values. A sparse storage of this covariance

matrix is feasible, but would lead to high computa-
tional costs when performing the matrix inversion or
the product of the matrix by a vector, for instance in
Equation (48). Therefore, the solution of minimizing
Equation (48) by designing the covariance matrixBR

and inverting it is not considered for the operational
use of the image assimilation method.

Let however remark thatBR is not required for
computing the cost function with Equation (48) but
only its inverseB−1

R is. As the blocks included in

B−1
R are Toeplitz matrices, the best way to compute

the value of the cost functionJ with Equation (48) is
to consider each block ofB−1

R as a discrete filter. Let

first remark that the filter associated toB−1 is defined
by:

B−1 =




0 0 0
0 1

σ2 0
0 0 0


 (51)

For further illustrating the discussion, let consider that
the derivatives are computed with forward schemes,
which are determined by the following convolution
filters:

Dx =




0 0 0
0 −1

dx
1
dx

0 0 0


 , Dy =




0 1
dy 0

0 −1
dy 0

0 0 0


 (52)

Let denoteB−1
Ri, j

the bloc on theith line and jth column

of B−1
R , as it is written in Equation (49), considering

the definition ofC given by Equations (45) and (39).
Let denoteB−1

Ri ,j
the corresponding convolution filter.

Using the mathematical rules for addition and com-
position of filters, it comes:

B−1
R1,1

=




0 −α 0
−(α+β) L1 −(α+β)

0 −α 0


 (53)

where:

L1 = 2

(
α+β
dx2 +

β
dy2

)
+ γ (54)

B−1
R2,2

=




0 −(α+β) 0
−α L2 −α
0 −(α+β) 0


 (55)

where:

L2 = 2

(
β

dx2 +
α+β
dy2

)
+ γ (56)

Regularization Terms for Motion Estimation - Links with Spatial Correlations

463



B−1
R1,2

=




β
dxdy

−β
dxdy

0

−β
dxdy

β
dxdy

0

0 0 0


 (57)

B−1
R2,1

=




0 0 0

0
β

dxdy
−β

dxdy

0
−β

dxdy
β

dxdy


 (58)

The use ofB−1
R during the computation ofJ with

Equation (48) is replaced by the use of the four pre-
vious filters. The design of this non diagonal ma-
trix BR is equivalent, as demonstrated above, to ap-
ply the regularizationR to the state vector. However,
the covariance method has the advantage, compared
to the regularization method, that the derivatives of
the regularization functions defined by Equations (22,
24, 27) are no more required during the minimiza-
tion. Moreover, the filters included in the matrixB−1

R ,
Equations (49, 45, 39), are applied both in the for-
ward integration, computing the cost functionJ of
Equation (48), and in the backward integration, which

computes the gradient
dJ

dX(0)
:

dJ
dX(0)

= 2B−1
R

(
X(0)−X(b)

)
+λ(0) (59)

Studying the values of the covariance matrixBR ,
corresponding to the values of the coefficientsα, β
andγ is a tool for better understanding the impact of
the regularizationR on the estimation. For doing this,
it is first required to invert the matrixB−1

R , defined in
Equations (49, 45, 39), in order to obtain the covari-
ance matrixBR . This can not be done in operational
use, due to the large size of the involved state vectors
(3 times the size of the image domain). Moreover, it
has no interest apart having a complete knowledge of
the links imposed between variables of the state vec-
tor and between pixels of the spatial domain. How-
ever, when designing an operational use of motion
estimation, this allows visualizing and understanding
how the regularization terms act on the estimation re-
sults. This can be applied, during a learning phase for
calibrating the operational use, on small sub-windows
on the whole image domain as explained in the fol-
lowing.
For being able to easily compute the inverse of the
matrix B−1

R , we consider a small size sub-image of

35×35 pixels. One can extract thexth line of the co-
variance matrix. It corresponds to the covariance val-
ues of that pixelx with all other pixels of the domain.
In the following, we focus on the visualization of the

covariances inBR11
, as they involve the three regular-

ization terms and the three parametersα, β andγ as
visible in Equations (53) and (54).BR22 is a rotated
version ofBR11

and would lead to a redundant visu-
alization. BR12 andBR21 are only depending on the
term R2 and on the parameterβ (see Equation (55)
and (56)). Their visualization would not allow to im-
prove the understanding of the joint effect of the three
regularization terms.

The termR3, regularizing the norm of the motion
field with the parameterγ, acts on the individual vari-
ance and does not add any correlation between pixels.
Varying the two termsR1, regularizing the gradient
norm ofw with the parameterα, andR2, regularizing
the divergence ofw with the parameterβ, allows to
display the covariance between a reference point and
the rest of the domain. The state vector is composed
of the three fields corresponding to the values ofu, v
andI at all locations. The covariance matrix associ-
ated to each field may be displayed as an image.

Figure 1 gives the covariance of the componentu
of pixel(17,17)with the rest of the sub-image. On the
left, the coefficient ofR1 is preponderant. In the mid-
dle,R1 andR2 have the same importance in the com-
putation. On the right,R2 is preponderant. It can be

Figure 1: Covariance values associated to the central point
(red pixel); whenR1 is preponderant(on the left); whenR1
andR2 are of same weight(in the middle); and whenR2 is
preponderant(on the right).

seen thatR1 mimics an homogeneous diffusion pro-
cess. On another hand,R2 favors specific directions
for creating vortices and limiting the divergence of the
motion field.

The range of the covariance values is parametrized
by the values ofα andβ. This is, first, illustrated on
Figure 2, which displays the covariance values asso-
ciated to the regularization termR1, according to a
small α, on the left, and a higher one, on the right.
Similarly, Figure 3 shows the covariance values as-
sociated to the regularization termR2. On the left
image, a small value ofβ is used, whereas the right
image shows the covariance values for a higherβ.

It can be seen, by analyzing Figure 2 and Figure 3,
that the region of high covariance increases with the
value of the regularization parametersα andβ. Dis-
playing a number of such images should help, for a
given, application, to define the parameters values ac-
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Figure 2: Covariance values associated to the central point
(red pixel) for R1 only; with a smallα (on the left)and a
higher one(on the right).

Figure 3: Covariance values associated to the central point
(red pixel) for R2 only; with a smallβ (on the left)and a
higher one(on the right).

cording to the size of the structures to be found on the
images.

For visualizing the impact of the parameters on the
estimation, several motion results are given. On Fig-
ure 4, the estimation is computed on traffic data from
the database KOGS/IAKS of the Karlsruhe Univer-
sity (Nagel, 1995). Motion is displayed with the color
code of the Middlebury data base described by Baker
et al. (Baker et al., 2011). The top image displays
the result obtained with onlyR3. It can be seen that
the motion field is irregular even if its whole shape is
overall well recovered. The second image displays the
estimation result when addingR1, with a small value
of α (this corresponds to the left image of Figure 2).
The estimation is smoother than the one on the top
image, but irregularities remain. The bottom image is
obtained with a largeα value (this corresponds to the
right image of Figure 2). The estimation is smooth
without any irregularities.

A sequence of Sea Surface Temperature (SST) is
processed as another illustration of the impact on the
estimation of different parametrizations. Some im-
ages of the sequence are displayed on Figure 5. Result
are shown on Figure 6, where the estimation is either
obtained withR1 and R3 or R2 and R3. It can bee
seen, from the left image of Figure 6, thatR1 tends
to favor smooth and homogene motion fields. In the
contrary, as seen from the right image of Figure 6,R2

Figure 4: From top to bottom: Motion result withR3 only;
R3 andR1 and a small value ofα; R3 andR1 and a high
value ofα.

Figure 5: Sequence of Sea Surface Temperature images.

favors gyral structures to explain the temporal evolu-
tion of the gray level values.

4 CONCLUSIONS

The paper discusses the mathematical links between
the Tikhonov regularization terms and the spatial co-
variances applied between pixels. The application
concerns the issue of motion estimation, which is
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Figure 6: Estimation results obtained on the SST sequence.
Left: Motion result withR1 andR3. Right: Motion result
with R2 andR3.

an ill-posed problem that is often solved by adding
regularization terms in a cost function. In the pa-
per, the framework of motion estimation relies on im-
age assimilation, which also implies to model the co-
variances between pixels, variables and dates. The
major result of that research comes from the dis-
play of the regularization terms as images of corre-
lation values. Analyzing these display regarding the
parametrization of the regularization, enables to visu-
alize the region of high covariance of the regulariza-
tion and allows to objectively determine the values of
the weighting coefficients according to image prop-
erties. The perspectives concern the design and inter-
pretation of regularization terms, which are suitable to
model the structures displayed on image sequences.
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