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Abstract: We consider a generalisation of MIN WEIGHTED VERTEX COVER motivated by a problem in wildfire pre-
vention. The problem is defined for a fixed number of time periods and we have to choose, at each period,
some vertices to be deleted such that we never have two adjacent remaining vertices. The specificity is that
whenever a vertex is deleted it reappears after a given number of periods. Consequently we may need to delete
a single vertex several times. The objective is to minimise the total weight (cost) of deleted vertices. The
considered application motivates the case of planar graphs. While similar problems have been mainly solved
using mixed integer linear models (MIP) we investigate a graph approach that allows to take into account the
structure of the underlying graph. We use a reduction to the usual MIN WEIGHTEDVERTEX COVER to devise
efficient approximation algorithms and to raise some polynomial classes.

1 INTRODUCTION

Fuel management problems is one of the main tech-
niques used for reducing the impact of wildfires (Boer
et al., 2015). The main idea consists in dividing a
landscape into a number of cells representing candi-
date locations for fuel treatment like harvesting (EU,
North America) or burning (USA, Australia). Treat-
ments are generally applied on multiple periods (sev-
eral years) and key decisions are to determine which
cells should be treated during each time period (i.e.,
each year).

Spatially explicit multi-period fuel treatment
scheduling is a very complex problem (Chung, 2015).
A particularity to take into account is the transient
effect since vegetation begins to re-grow after it has
been treated. The risk of fire spread from one cell
to another one becomes important if the ages of the
vegetation in the two adjacent cells achieve a specific
threshold and does not significantly increase for older
vegetation (Boer et al., 2015).

Most of the known optimisation solutions for
this problem involve a Mixed Integer Linear Pro-
gramming approach (MIP) for locating fuel treat-
ments (see, e.g., (Hof et al., 2000; Kim et al., 2009;
Minas et al., 2014; Rachmawati et al., 2015; Wei
et al., 2008)) with various objectives. For further de-
tails on this area, the reader is referred to (Ager et al.,

2010; Chung, 2015; Minas et al., 2012).
Due to computational constraints, many of the

modelling efforts have considered very small land-
scapes in a single period problem (see e.g., (Hof et al.,
2000; Wei et al., 2008)). Multi-year spatial fuel treat-
ment planning has been considered in (Kim et al.,
2009; Minas et al., 2014). In the latter paper, the un-
derlying adjacency graph structure is explicitly used
in the model and computational results are proposed
on small grid-like partition of the map. However, to
our knowledge, the adjacency graph of cells has never
been used for algorithmic purpose.

MIP has the advantage of flexibility and of easy
representation of diverse constraints and objectives as
well as the possibility to use efficient solvers. How-
ever, as an almost universal model, a well known
drawback is that it makes it difficult to take into ac-
count the true nature of the problem and the speci-
ficity of the instances appearing in applications. In
particular, the MIP approaches that have been devel-
oped so far for fuel management problems do not
use any specific property of the underlying matrix
and thus, induce exponential time algorithms that be-
come very quickly intractable (Chung, 2015). As a
consequence, their use is limited to small instances
and is justified only for problems that are hard, even
for the considered classes of instances appearing in
practice. Therefore, preliminary theoretical complex-
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ity considerations are important to justify these ap-
proaches. The last drawback of the current models
is that they make it very hard to detect and use links
with other problems studied in other areas of appli-
cations. The notion ofapproximation preserving re-
ductions gives a suitable theoretical framework for es-
tablishing such links and using them in practice. The
reader is referred to (Ausiello et al., 1999) for basic
definitions in polynomial approximation theory.

In this work we propose to use a graph model as a
complementary approach for some fuel management
problems. We consider the example of the model de-
veloped in (Minas et al., 2014) and give first results in
this direction that motivate such though process and
illustrate how it can be used for better understand-
ing the problem, studying its complexity1, designing
efficient algorithms in some specific graph instances
and identifying some links with extensively studied
problems. As a preliminary work, this paper remains
essentially theoretical and considers a simplified ver-
sion of the practical problem. However, our example
illustrates how such though process can raise some
new research questions as well as particular kind of
solutions that are not naturally produced by a usual
MIP model. We strongly believe that such approach
is interesting, as a complement of MIP solutions, and
we hope it will foster further works in this direction.

2 THE MODEL

In this study we will mainly follow the model pro-
posed in (Minas et al., 2014). We assume that the
landscape is already partitioned into zones (called
cells), each having a specific predominant fuel pat-
tern. Each cell is associated with a discrete time step
function representing the age of the fuel that is in-
creased by one each year if the cell is untreated and
reset to zero if it is treated; however, up to some
threshold the age of the cell is considered asold and
does not need to be incremented since the vegeta-
tion’s behaviour is essentially the same up to the old-
vegetation threshold. From this threshold the risk of
fire spread becomes high and a critical situation oc-
curs when two such cells are adjacent (i.e. share a
boundary line). This age function is characterised by
two parameters supposed to be known:

1. the initial fuel age;

2. the old-vegetation threshold.

The model is formulated with the following nota-
tions:

1Thus, eventually motivating some previous MIP ap-
proaches.

• I = {1, . . . ,n} will denote the set of all cells in the
landscape and we will denote each cell with index
i ∈ I;

• V = {1, . . . ,m} is a finite set of vegetation types
andvi ∈V , i = 1, . . . ,n is the predominant vegeta-
tion type of celli ∈ I;

• Each vegetation typev ∈ V is associated with
an old-vegetation thresholdov : the vegetation
will be called old if its old-vegetation threshold
is reached; a cell with old vegetation is called old;

• T is the number of time periods in the planning
horizon andt = 1, . . . ,T is the time parameter;

• ai,0, i ∈ I is the initial fuel age of celli and
ai,t , t = 1, . . . ,T + 1 will denote the age of cell
i at the beginning of time periodt wheret = T +1
corresponds to the end of the last time period;

• For every celli∈ I, ci(t,ai,t), t = 1. . . ,T is the cost
for treating the celli at timet if its age vegetation
is ai,t

The risk of fire spread from one cell to another one
is represented by a graphGI = (I,E) with the cells as
vertex set andE as edges. Two cellsi, j ∈ I are con-
nected if there is a risk of fire spread from one to the
other when both cell’s vegetations are old (ai,t = ovi

anda j,t = ov j ). In this work we considerGI as non-
directed and we will mainly consider planarGIs cor-
responding to the case where the edge setE corre-
sponds to the usual spatial adjacency of cells.

The aim is to decide, for each time periodt, which
setCt ⊂ I to treat. If a celli is treated during the time
periodt then its vegetation age is set to 0 at the next
period while is is just increased by one - up to the
old-vegetation threshold - if it is not selected:

∀t = 1, . . . ,T,∀i = 1, . . . ,n,

ai,t+1 =

{
min(ai,t +1,oi) if i /∈Ct

0 if i ∈Ct

The following combinatorial problem, calledmin-
imum Zero Risk Fuel Treatment Scheduling(ZFT S),
is a simplified abstraction of the real problem to be
solved in practice. It provides a theoretical frame-
work that allows us to understand the combinatorial
structure of the problem.

ZFT S’s objective is to minimise the total cost over
the time period[1,T ] in order to never have two cells
with old vegetation that are connected inGI . In the
conclusion we will also mention the version where we
are given some a budgetbt for each periodt and the
objective is to minimise over the time period[1,T ]
the total number of connections between two old veg-
etation cells such that the total budget used during
each time periodt does not exceedbt . This problem,
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called minimum Budget constrained Fuel Treatment
Scheduling (BFT S) is exactly the one studied in (Mi-
nas et al., 2014).

2.1 Some Graph Theory Related
Notations

For all graph notions not defined here, the reader is
referred to (Diestel, 2012) and for all complexity no-
tions he is referred to (Garey and Johnson, 1979).

All graphs considered in this work are simple
undirected graphs. Given a graphG = (I,E), I de-
notes the set of vertices andE the set of edges. Given
I′ ⊂ I, we denote byG[I′] the subgraph ofG induced
by I′. A vertex cover is a set of vertices such that ev-
ery edge has at least one extremity in this set. The
problem of deciding, for any graphG and integerK
whetherG contains a vertex cover of size at most
K is a well-known NP-complete problem (Garey and
Johnson, 1979). MIN VERTEX COVER is the problem
of determining in any graph instanceG a vertex cover
of minimum size; since its decision version is NP-
complete in general graphs, it is itself NP-hard. In the
weighted version, non negative weightωi is associ-
ated to vertexi ∈ I and the weight of a subsetI′ ⊂ I is
ω(I′) = ∑i∈I′ ωi. M IN WEIGHTED VERTEX COVER

is to determine, for any weighted graph a vertex cover
of minimum weight.

A graphG = (V,E) is calledplanar if it can be
embedded in the two dimension plane without cross
edges. In particular, given a set of connected ar-
eas in the plane, the adjacency graph with vertex set
these areas and two areas linked by an edge if they
share a common bounder-line of positive length is
planar. A basic example of planar graph is the case
of grid graph. A grid graph of sizen×m is defined
as follows: its vertex set is{1, . . . ,n} × {1, . . . ,m}
with edges between(i, j) and (i′, j′) if and only if
|i− i′|+ | j− j′|= 1. Grid graphs are planar andbipar-
tite, which means that their vertex set can be divided
into two stable sets (set of vertices pairwise not linked
by an edge).

3 A VERTEX COVER APPROACH
FOR ZFT S

We will say that a treatment costc(t,a) is not increas-
ing if ∀(t,a) ∈ N2,c(t +1,a+1)≤ c(t,a).

Let us first note that, for any instance ofZFT S
on a graphGI, if there is only one single period, then
the problem is to find a minimum vertex cover of the
graph induced by the vertices associated with old veg-

etation cells: the vertices in a vertex cover correspond
to the cells to be treated. So, we immediately get the
following result:

Remark 1. ZFT S is at least as hard as M IN VER-
TEX COVER and in particular it is NP-hard in planar
graphs (Garey and Johnson, 1979).

This result holds even for the case with only one
vegetation type and all costs are equal to one. It moti-
vates us working in two different research directions:
either finding polynomial classes of instances or de-
vising good approximations for NP-hard cases.

For a minimisation combinatorial problem, a
polynomial-time algorithm (Ausiello et al., 1999) is
said to guarantee the approximation ratioρ if, for each
instanceH of optimal valueβH it computes a feasible
solution of valueλH such thatλH ≤ ρβH . Moreover,
a family of polynomial algorithms indexed byε > 0
and guaranteeing the ratio 1+ε is called a polynomial
approximation scheme (PTAS).

Proposition 1. For any instance of ZFT S with not in-
creasing treatment costs, for every feasible solution S,
there is a feasible solution S̃, with an objective value
not greater than S for which every treatment occurs
on old vegetation cells.

Proof. (sketch) We iteratively transformS as follows.
Consider the first timet a cell i ∈ I is treated inS
with a vegetation ageai verifying ai < oi. If T − t <
oi − ai, then we just withdraw the related treatment,
else we delay it untilt + oi − ai. All other treatments
are kept unchanged. We denote byS1 the transformed
solution. We can easily verify thatS1 is still feasible
(consider the two cases, dates up tot + oi − ai and
later dates).

We then define ameasure m of a solutionσ as
the sum∑i∈I di, wheredi is either the first date when
i is treated with an age less than its old-vegetation
threshold inσ or T + 1 if such a date does not ex-
ist. m(σ) is an integer that ranges between 0 and
(T + 1)|I| and moreoverm(σ) = (T + 1)|I| if and
only if all treatments in solutionσ occur on old veg-
etation cells. It is straightforward to verify that if
m(S) < (T + 1)|I|, thenm(S1) > m(S). As a conse-
quence, by repeating the previous process, we itera-
tively build instancesS2,S3, . . . until obtaining an in-
stanceSk such thatm(Sk) = (T +1)|I|. S̃= Sk satisfies
the required constraints.

In what follows, we show how to transform any
algorithm for MIN WEIGHTED VERTEX COVER into
an algorithm forZFTS with some performance guar-
anties (approximation preserving reduction). Propo-
sition 2 corresponds to short time periods and multi-
vegetation while Proposition 3 deals with the single
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vegetation case and any time period. Both results lead
to polynomial cases. Finally, our main result is Propo-
sition 4 that leads to interesting asymptotical results
for long time periods and multi-vegetation.

Proposition 2. Let C be a hereditary class of graphs
for which M IN WEIGHTED VERTEX COVER can be
approximated in polynomial time within the ratio ρ.
The problem ZFT S on the class C with T ≤ ov for all
vegetation types v and with constant treatment costs
can be approximated in polynomial time within the
same approximation ratio ρ.

Proof. We consider an instance satisfying the hy-
potheses and denote byGI the related graph with cells
setI. We then associate each vertex (cell)i with the
weightci corresponding to the treatment cost.

Using Proposition 1 we can restrict ourselves to
feasible solutions for which only cells with old veg-
etation are treated. Moreover, sinceT ≤ ov, when-
ever a cell is treated during the period, it will never
achieve its old-vegetation threshold and will not be
treated again. We callnice a solution for which each
cell is treated no more than once and every treated
cell is treated at the date it achieves its old-vegetation
threshold. The above arguments show that there is an
optimal solution that is nice.

Let I′ denote the set of cellsi with an initial age
ai satisfyingai ≥ oi −T , then the set of nice optimal
solutions is in one-to-one correspondence with vertex
covers of the graphGI [I′] and moreover, the cost of
such solutions is exactly the weight of the related ver-
tex cover. Consider indeed an edgexy of GI[I′], since
x,y ∈ I′ they both achieve their old-vegetation thresh-
old during the period and consequently one of them
needs to be treated at least once. Conversely, for any
vertex cover ofGI[I′] with weightW , treating each of
its vertices when it achieves its old-vegetation thresh-
old constitutes a nice solution with a cost equal toW .
This concludes the proof.

In (Baker, 1994), a polynomial time approxima-
tion scheme for Min Vertex Cover in planar graphs is
devised and the dynamic programming approach also
holds for the weighted case. Another interesting par-
ticular case is the bipartite case since a landscape with
square cells, leading to a subgrid as the fire spread
graph, is considered in different papers (see e.g. (Mi-
nas et al., 2014)). In this case the weighted vertex
cover is known to be polynomially solvable. We de-
duce the following corollary.

Corollary 1. The problem ZFTS with T ≤ ov for all
vegetation types v and with constant treatment costs
has:

1. a polynomial time algorithm in bipartite graphs
and in particular in sub-grids.

2. a polynomial time approximation scheme in pla-
nar graphs.

For real applications however, it is natural to
consider long time horizons with, possibly, a re-
optimisation with a smaller periodicity. We then pro-
pose the following strategy built from a weighted ver-
tex coverV ′ for some weight system.

At each time period one treats all the cells in
V ′ which have achieved their old-vegetation
threshold together with at least one adjacent
cell.

Such strategy is very easy to be implemented once
V ′ is determined and moreover it has the property to
beperiodic, which means that, once a celli is treated
it will be treated again everyoi years. We first con-
sider the single vegetation case and then turn to the
multi-vegetation case.

Proposition 3. Let C be a hereditary class of graphs
for which M IN WEIGHTED VERTEX COVER can be
approximated in polynomial time within the ratio ρ.
The problem ZFT S on the class C with a single vege-
tation type of old-vegetation threshold o and with con-
stant treatment costs can be approximated in polyno-
mial time within:
(1) the same approximation ratio ρ if T ≡ 0(modo).

(2) the approximation ration

(
1+ 1

⌊ T
o ⌋

)
ρ else.

Moreover, these ratios can be guaranteed by a pe-
riodic solution of period o: the same treatment pro-
gram is proposed during each time interval [ko,(k+
1)o),k ∈ N.

Proof. As in the proof of Proposition 2, we consider
an instance satisfying the hypotheses and denote by
GI the related graph with cells setI. We then associate
each vertex (cell)i with the weightci corresponding
to the treatment cost. Using similar arguments we get
that for any edgexy, eitherx or y should be treated
during any time period of lengtho. As a consequence,
the optimal valueβ satisfies:

β ≥
⌊

T
o

⌋
τc (1)

whereτc denotes the minimum weight of a vertex
cover ofGI.

As approximated solution, we then consider a ver-
tex coverI′ ⊂ I computed by the considered vertex
cover approximation algorithm. Denoting byτ′ the
cost of I′, we haveτ′ ≤ ρτc. The solution we take
for the whole instance just consists in treating dur-
ing each time period[ko,(k+ 1)o),k ∈ N vertices in
I′ at the time they achieve their old-vegetation thresh-
old. During the last period

]⌊
T
o

⌋
o;T

]
, one does not
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treat vertices that do not achieve their old-vegetation
threshold. Whenever a vertex is treated, at timet, it
will be treated again at timet + o and not before; this
shows that the solution iso-periodic.

Since treatment costs are not time-dependent, the
total costλ′ of this solution satisfies:

1. if T ≡ 0(modo), λ′ = T
o τ′ and as a consequence,

using the relation 1 we immediately getλ′ ≤ ρβ.

2. else, we haveλ′ ≤
(⌊

T
o

⌋
+1

)
τ′ ≤

(⌊
T
o

⌋
+1

)
ρτc

and using the relation 1 we getλ′ ≤(
1+ 1

⌊ T
o ⌋

)
ρβ

This completes the proof.

Note that the strategy we have used is less restric-
tive than the previous quoted strategy since we treat a
vertex in the pre-determined solution as soon as it be-
comes old, even if it does not have an old neighbour.
However the more precise strategy that would be used
in practice does not allow to improve the worst case
approximation ratio.

Corollary 2. The problem ZFTS with a single vege-
tation type of old-vegetation threshold o and with con-
stant treatment costs has:

1. a periodic polynomial time algorithm (resp.,
asymptotically optimal) in bipartite graphs if T ≡
0(modo) (resp., if T ≫ 0).

2. a periodic polynomial time approximation scheme
(resp., asymptotic PTAS) in planar graphs if T ≡
0(modo) (resp. if T ≫ 0).

We now present our main result.

Proposition 4. Let C be a hereditary class of graphs
for which M IN WEIGHTED VERTEX COVER can be
approximated in polynomial time within the ratio ρ.
The problem ZFTS on the class C with constant treat-
ment costs, multi-vegetation type (we denote respec-
tively by oi and ai the old-vegetation threshold and the
initial vegetation age in cell i) can be approximated in
polynomial time within

T + a
T − ℓ

ρ ≤ (1+
2o

T − o
)ρ

on a time period T ≥ ℓ, where a = maxi∈I ai and ℓ =
maxi∈I(oi − ai).

Proof. (sketch) Consider an instance ofZFT S with
GI = (I,E) the associated graph. We denote byci the
treatment cost of vertex (cell)i and define the follow-
ing weight system onI: ∀i ∈V,ωi =

ci
oi

. We denote by
τω(GI) the minimum weight of a vertex cover inGI.

Let I′ ⊂ I be aρ-approximated weighted vertex cover
for this weight system:

ω(I′) = ∑
i∈I′

ωi ≤ ρτω(GI) (2)

We denote bySI′ theZFT S solution constructed from
I′ and byS∗ an optimal solution. According to Propo-
sition 1 we assume that only old vegetation cells are
treated in this optimal solution. The cost ofSI′ and
S∗ are denoted byc(SI′) andc(S∗), respectively. We
havec(S∗)≤ c(SI′).

By definition of the solutionSI′ a vertexi ∈ I′ is

treated at most
⌊

T+ai
oi

⌋
times and consequently, using

Relation 2:

c(SI′)≤ ∑
i∈I′

ci

⌊
T + ai

oi

⌋
≤ (T + a)ρτω(GI) (3)

For each time periodt = 1, . . . ,T we define the set
It = {i ∈ I,ai + t − 1 ≥ oi} that can be seen as the
set of cells that would have an old vegetation at the
beginning of periodt if no treatment was applied at
all. SetsIt , t = 1, . . . ,T , are nested (∀t < T, It ⊆ It+1)
and fort ≥ ℓ+1, we haveIt = I. Fort = 1, . . . ,T , we
denote byGt

I = GI [It ].
Consider now the optimal solutionS∗. We asso-

ciate toS∗ as subsetU of U = {(i, t), t = 1, . . . ,T, i ∈
It} as follows: whenever a vertexi ∈ I is treated dur-
ing the periodt, we add inU the vertices(i, t+k),k =
0, . . . ,min{oi −1,T − t}, and assign to each one the
weight ci

oi
. Roughly speaking this corresponds to

spread the treatment cost over the whole treatment
and regrowing period. For each periodt we define
U t = {i,(i, t) ∈U}. We have:

c(V ∗)≥
T

∑
t=1

ω(U t) (4)

Since the setsIt , t = 1, . . . ,T , are nested and only
vertices in It are treated during periodt, we have
∀t = 1, . . . ,T,U t ⊂ It . Now, it is easy to see that
for every t = 1, . . . ,T , U t is a vertex cover ofGt

I .
Since the weights of vertices inU t correspond to the
weights inGI , we deduce from Relation 4:

c(V ∗)≥
T

∑
i=1

τω(G
t
I)≥ (T − ℓ)τω(GI) (5)

Relations 3 and 5 immediately conclude the proof:

c(V ′)≤ T + a
T − ℓ

c(V ∗) (6)

We emphasise some interesting particular cases:
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Remark 2. Note that the result still holds if we re-
place a by aV ′ = maxi∈V ′ ai.
Then, if aV ′ = 0, meaning that the computed vertex
cover only includes cells with new vegetation, the re-
lated ratio will be

T
T − ℓ

ρ ≤ T
T − o

ρ

with o = maxi∈I oi.
If, on the contrary, all cells are old at the beginning
of the process (ℓ= 0), the ratio will be

T + a
T

ρ =
T + o

T
ρ

Remark 3. For large T , in particular if T ≥ o
ε , ε > 0,

we get the ratio (1+ 2ε
1−ε)ρ

Corollary 3. The problem ZFT S with constant treat-
ment costs, multi-vegetation type has:

1. a periodic asymptotical optimal polynomial time
algorithm in bipartite graphs and in chordal
graphs if T ≫ 0.

2. a periodic asymptotic polynomial time approxi-
mation scheme in planar graphs if T ≫ 0.

4 DISCUSSION AND FUTURE
DIRECTIONS

In this work we have studied the problemZFT S that
can be seen as a multi-period vertex cover problem:
how to remove a set of vertices of minimum weight
so as to eliminate all edges with the particularity that
a removed vertex reappears after some time periods
(regrowing process). We have shown how to build
efficient solutions by using efficient algorithms for
M IN WEIGHTED VERTEX COVER. This example il-
lustrates the potential advantage of such a graph ap-
proach:

1. It is suitable to understand links with well known
problems - MIN WEIGHTED VERTEX COVER in
our case - that has been extensively studied. The
proposed reduction allows even to transform good
heuristics for the latter into heuristics for the for-
mer. Since the reduction preserves good approxi-
mated values we can expect the resulting heuristic
to be good.

2. It is suitable to derive some properties and algo-
rithms in specific graph classes from the known
properties of MIN WEIGHTED VERTEX COVER

in these classes.

3. It also allows to better understand the hardness of
the problem in some particular cases using their
structural properties.

The continuation of this work includes numerical tests
on real instances and the analysis of the solutions with
final users in Victoria State.

Our results emphasised the notion of periodic so-
lutions that has some advantages. Once the original
vertex cover is computed, the treatment schedule can
be computed in linear time and has a better behaviour
for long time periods contrary to other methods. It is
also very simple to implement in practice. This raises
mainly two research questions. The first one is to de-
termine the best periodic solution and we conjecture
that our approach is asymptotically optimal. On the
contrary if periodicity is not desirable since the same
cells are always treated, it motivates an opposite no-
tion for solutions that spread uniformly the treatments
over all cells for long time periods.

The problemZFT S is a very simplified abstrac-
tion of the real problem. We plan to generalise the
results obtained here to some generalisations of ver-
tex cover that are more relevant for fuel management.
The notion of fragmenting a graph (Edwards and Farr,
2001) is particularly interesting in this context. It cor-
responds to remove as few vertices as possible so that
the components of the resulting graph do not have
more thank vertices, for a fixedk. The casek = 1
corresponds to the notion of vertex cover.

A second research direction is to investigate the
problem with fixed budgets at each time period
(BFT S). Both complexity results and approximation
results similar to the ones presented here would be
interesting. So far, using a general though process
described in (Demange and Ekim, 2013), we have al-
ready proved it is NP-hard even in grid graphs, with
unitary treatment costs, single vegetation type and
T < o. This hardness result emphasises an important
difference with the problem addressed in this paper
and, in some way, justifies a posteriori the MIP ap-
proach proposed in (Minas et al., 2014). Our proof
however still does not prove whether the same prob-
lem remains hard with a constant number of periods
and constant old-vegetation threshold. Such require-
ments are natural from the application point of view.
We conjecture that this case is still hard in grids.
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