Modeling of an Insect Proprioceptor System based on Different Neuron Response Times

Daniel Rodrigues de Lima, Michel Bessani, Philip Newland, Carlos Dias Maciel

Abstract

This paper analyzes neuronal spiking signals from the Desert Locust Femorotibial Chordotonal Organ (FeCO). The data comes from records of the insect neuronal response due to external stimulation. We measured the Inter-Spike Interval (ISI) and calculated Transfer Entropy for investigate different FeCO responses. ISI is a technique that measures the time between two spikes; and transfer entropy is a theoretical information measure used to find dependencies and causal relationships. We also use survival functions to assemble FeCO models. Furthermore, this work uses and compares results of two approaches, one with transfer entropy and other with ISI measures. The results indicate evidence to support the existence of more than one type of FeCO neuron.

References

  1. Achcar, J. A. and Moala, F. A. (2015). Use of copula functions for the reliability of series systems. International Journal of Quality & Reliability Management, 32(6):617-634.
  2. Angarita-Jaimes, N., Dewhirst, O. P., Simpson, D. M., Kondoh, Y., Allen, R., and Newland, P. L. (2012). The dynamics of analogue signalling in local networks controlling limb movement. European Journal of Neuroscience, 36(9):3269-3282.
  3. Barnett, L., Barrett, A. B., and Seth, A. K. (2009). Granger causality and transfer entropy are equivalent for gaussian variables. Phys. Rev. Lett., 103:238701.
  4. Bewick, V., Cheek, L., and Ball, J. (2004). Statistics review 12: survival analysis. CRITICAL CARE-LONDON-, 8:389-394.
  5. Birmingham, K., Gradinaru, V., Anikeeva, P., Grill, W. M., Pikov, V., McLaughlin, B., Pasricha, P., Weber, D., Ludwig, K., and Famm, K. (2014). Bioelectronic medicines: a research roadmap. Nature Reviews Drug Discovery, 13(6):399-400.
  6. Burrows, M., Laurent, G., and Field, L. (1988). Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. The Journal of neuroscience, 8(8):3085-3093.
  7. Cabrero, M., Jabbour, E., Ravandi, F., Bohannan, Z., Pierce, S., Kantarjian, H. M., and Garcia-Manero, G. (2015). Discontinuation of hypomethylating agent therapy in patients with myelodysplastic syndromes or acute myelogenous leukemia in complete remission or partial response: Retrospective analysis of survival after long-term follow-up. Leukemia Research, 39(5):520 - 524.
  8. Chen, L., Deng, Y., Luo, W., Wang, Z., and Zeng, S. (2009). Detection of bursts in neuronal spike trains by the mean inter-spike interval method. Progress in Natural Science, 19(2):229 - 235.
  9. Collett, D. (2003). Modelling survival data in medical research. Texts in statistical science. Chapman & Hall, London, New York.
  10. Dewhirst, O., Angarita-Jaimes, N., Simpson, D., Allen, R., and Newland, P. (2013). A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs. Journal of Computational Neuroscience, 34(1):39-58.
  11. Endo, W., Santos, F., Simpson, D., Maciel, C., and Newland, P. (2015). Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network. Journal of Computational Neuroscience, 38(2):427-438.
  12. Harrell, F. E. (2013). Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer Science & Business Media.
  13. Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., and Beggs, J. M. (2011). Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS ONE, 6(11):e27431.
  14. Jegadeesan, R., Thakor, N., and Yen, S. C. (2015). Wireless for peripheral nerve prosthesis and safety. In Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference on, pages 648-651.
  15. Jimnez-Fabin, R. and Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lowerlimb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics, 34(4):397 - 408.
  16. Jin, S.-H., Lin, P., and Hallett, M. (2010). Linear and nonlinear information flow based on time-delayed mutual information method and its application to corticomuscular interaction. Clinical Neurophysiology, 121(3):392-401.
  17. Klein, J. P. and Moeschberger, M. L. (2003). Survival analysis: techniques for censored and truncated data. Springer Science & Business Media.
  18. Lawless, J. F. (2011). Statistical models and methods for lifetime data, volume 362. John Wiley & Sons.
  19. Maciel, C. D., Simpson, D. M., and Newland, P. L. (2012). Inference about multiple pathways in motor control limb in locust. In BIOSIGNALS, pages 69-75.
  20. MacKenzie, T., Gifford, A. H., Sabadosa, K. A., Quinton, H. B., Knapp, E. A., Goss, C. H., and Marshall, B. C. (2014). Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the cystic fibrosis foundation patient registry. Annals of internal medicine, 161(4):233-241.
  21. Manal, K. and Rose, W. (2007). A general solution for the time delay introduced by a low-pass butterworth digital filter: An application to musculoskeletal modeling. Journal of Biomechanics, 40(3):678 - 681.
  22. Meyer-Baese, A. and Schmid, V. J. (2014). Pattern Recognition and Signal Analysis in Medical Imaging. Elsevier.
  23. Newland, P. L. and Kondoh, Y. (1997). Dynamics of neurons controlling movements of a locust hind leg ii. flexor tibiae motor neurons. Journal of Neurophysiology, 77(4):1731-1746.
  24. Nichols, J., Seaver, M., Trickey, S., Todd, M., Olson, C., and Overbey, L. (2005). Detecting nonlinearity in structural systems using the transfer entropy. Physical Review E, 72(4):046217.
  25. Pampu, N., Vicente, R., Muresan, R., Priesemann, V., Siebenhuhner, F., and Wibral, M. (2013). Transfer entropy as a tool for reconstructing interaction delays in neural signals. In Signals, Circuits and Systems (ISSCS), 2013 International Symposium on, pages 1- 4.
  26. Runge, J., Heitzig, J., Marwan, N., and Kurths, J. (2012). Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy. Phys. Rev. E, 86:061121.
  27. Santos, F. P. and Maciel, C. D. (2014). A pso approach for learning transition structures of higher-order dynamic bayesian networks. In Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC), 5th ISSNIP-IEEE, pages 1-6.
  28. Schreiber, T. (2000). Measuring information transfer. Physical review letters, 85(2):461.
  29. Schwalger, T., Droste, F., and Lindner, B. (2015). Statistical structure of neural spiking under non-poissonian or other non-white stimulation. Journal of Computational Neuroscience, 39(1):29-51.
  30. Subramaniam, K., Hooker, C. I., Biagianti, B., Fisher, M., Nagarajan, S., and Vinogradov, S. (2015). Neural signal during immediate reward anticipation in schizophrenia: Relationship to real-world motivation and function. NeuroImage: Clinical, 9:153 - 163.
  31. Vicente, R., Wibral, M., Lindner, M., and Pipa, G. (2011). Transfer entropya model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience, 30(1):45-67.
  32. Vidal-Gadea, A. G., Jing, X., Simpson, D., Dewhirst, O. P., Kondoh, Y., Allen, R., and Newland, P. L. (2010). Coding characteristics of spiking local interneurons during imposed limb movements in the locust. Journal of neurophysiology, 103(2):603-615.
  33. Walpole, R., Myers, R., Myers, S., and Ye, K. (2014). Probability and statistics for engineers and scientists.
  34. Wibral, M., Wollstadt, P., Meyer, U., Pampu, N., Priesemann, V., and Vicente, R. (2012). Revisiting wiener's principle of causality #x2014; interaction-delay reconstruction using transfer entropy and multivariate analysis on delay-weighted graphs. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pages 3676- 3679.
  35. Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C., Han, B., Zhang, X., Jin, F., Xu, F., and Lu, T. J. (2015). Bioinspired engineering of honeycomb structure using nature to inspire human innovation. Progress in Materials Science, 74:332 - 400.
Download


Paper Citation


in Harvard Style

Lima D., Bessani M., Newland P. and Maciel C. (2016). Modeling of an Insect Proprioceptor System based on Different Neuron Response Times . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 219-226. DOI: 10.5220/0005706202190226


in Bibtex Style

@conference{biosignals16,
author={Daniel Rodrigues de Lima and Michel Bessani and Philip Newland and Carlos Dias Maciel},
title={Modeling of an Insect Proprioceptor System based on Different Neuron Response Times},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)},
year={2016},
pages={219-226},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005706202190226},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)
TI - Modeling of an Insect Proprioceptor System based on Different Neuron Response Times
SN - 978-989-758-170-0
AU - Lima D.
AU - Bessani M.
AU - Newland P.
AU - Maciel C.
PY - 2016
SP - 219
EP - 226
DO - 10.5220/0005706202190226