Predicting Glaucomatous Progression with Piecewise Regression Model from Heterogeneous Medical Data

Kyosuke Tomoda, Kai Morino, Hiroshi Murata, Ryo Asaoka, Kenji Yamanishi

Abstract

This study aims to accurately predict glaucomatous visual-field loss from patient disease data. In general, medical data show two kinds of heterogeneity: 1) internal heterogeneity, in which the phase of disease progression changes in an individual patient’s time series dataset; and 2) external heterogeneity, in which the trends of disease progression differ among patients. Although some previous methods have addressed the external heterogeneity, the internal heterogeneity has never been taken into account in predictions of glaucomatous progression. Here, we developed a novel framework for dealing with the two kinds of heterogeneity to predict glaucomatous progression using a piecewise linear regression (PLR) model. We empirically demonstrate that our method significantly improves the accuracy of predicting visual-field loss compared with existing methods, and can successfully treat the two kinds of heterogeneity often observed in medical data.

References

  1. AGIS Investigators (2010). The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. American Journal of Ophthalmology, 130:429-440.
  2. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, pages 267-281.
  3. Collaborative Normal-Tension Glaucoma Study Group (1998). Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. American Journal of Opthalmology, 126(4):487-497.
  4. Fujino Y., Murata H., Mayama C., and Asaoka R. (2015). Applying “lasso” regression to predict future visual field progression in glaucoma patients. Investigative Ophthalmology & Visual Science, 56(4):2334-2339.
  5. Holmin, C. and Krakau, C. E. T. (1982). Regression analysis of the central visual field in chronic glaucoma cases. Acta Ophthalmologica, 60(2):267-274.
  6. Kingman, S. (2004). Glaucoma is second leading cause of blindness globally. Bulletin of the World Health Organization, 82(11):887-888.
  7. Liang, Z., Tomioka, R., Murata, H., Asaoka, R., and Yamanishi, K. (2013). Quantitative prediction of glaucomatous visual field loss from few measurements. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining 2013, pages 1121-1126.
  8. Maya, S., Morino, K., and Yamanishi, K. (2014). Predicting glaucoma progression using multi-task learning with heterogeneous features. In Proceedings of the 2014 IEEE International Conference on Big Data, pages 261-270.
  9. Maya, S., Morino, K., and Yamanishi, K. (2015). Discovery of glaucoma progressive patterns using hierarchical MDL-based clustering. In Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1979-1988.
  10. Mehta, M., Rissanen, J., and Agrawal, R. (1995). MDLbased decision tree pruning. In Proceedings of the 1st ACM SIGKDD Conference on Data Mining, pages 216-221.
  11. Morino, K., Hirata, Y., Tomioka, R., Kashima, H., Yamanishi, K., Hayashi, N., Egawa, S., and Aihara, K. (2015). Predicting disease progression from short biomarker series using expert advice algorithm. Scientific Reports, 5:8953.
  12. Murata, H., Araie, M., and Asaoka, R. (2014). A new approach to measure visual field progression in glaucoma patients using variational bayes linear regression. Investigative Ophthalmology & Visual Science, 55:8386-8392.
  13. Natarajan, R. and Pednault, E. (2002). Segmented regression estimators for massive data sets. In Proceedings of the 2nd SIAM International Conference on Data Mining, pages 566-582.
  14. Quigley, H. A. and Broman, A. T. (2006). The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology, 90(3):262-267.
  15. Rissanen, J. (1986). Stochastic complexity and modeling. Annals of Statistics, 14(3):1080-1100.
  16. Robnik- S?ikonja, M. and Kononenko, I. (1998). Pruning regression trees with MDL. In Proceedings of the 13th European Conference on Artificial Intelligence, pages 455-459.
  17. Satilmis, M., Orgül, S., Doubler, B., and Flammer, J. (2003). Rate of progression of glaucoma correlates with retrobulbar citation and intraocular pressure. American Journal of Ophthalmology, 135(5):664- 669.
  18. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2):461-464.
  19. Taketani Y., Murata H., Fujino Y., Mayama C., and Asaoka R. (2015). How many visual fields are required to precisely predict future test results in glaucoma patients when using different trend analyses? Investigative Ophthalmology & Visual Science, 56(6):4076-4082.
  20. Vogel, D. S., Asparouhov, O., and Scheffer, T. (2007). Scalable look-ahead linear regression trees. In Proceedings of the 13th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 757-764.
  21. Zhu, H., Russell, R. A., Saunders, L. J., Ceccon, S., Garway-Health, D. F., and Crabb, D. P. (2014). Detecting changes in retinal function analysis with nonstationary weibull error regression and spatial enhancement (ANSWERS). PLOS ONE, 9(1):e85654.
Download


Paper Citation


in Harvard Style

Tomoda K., Morino K., Murata H., Asaoka R. and Yamanishi K. (2016). Predicting Glaucomatous Progression with Piecewise Regression Model from Heterogeneous Medical Data . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 93-104. DOI: 10.5220/0005703900930104


in Bibtex Style

@conference{healthinf16,
author={Kyosuke Tomoda and Kai Morino and Hiroshi Murata and Ryo Asaoka and Kenji Yamanishi},
title={Predicting Glaucomatous Progression with Piecewise Regression Model from Heterogeneous Medical Data},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)},
year={2016},
pages={93-104},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005703900930104},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)
TI - Predicting Glaucomatous Progression with Piecewise Regression Model from Heterogeneous Medical Data
SN - 978-989-758-170-0
AU - Tomoda K.
AU - Morino K.
AU - Murata H.
AU - Asaoka R.
AU - Yamanishi K.
PY - 2016
SP - 93
EP - 104
DO - 10.5220/0005703900930104