Strategies for Phylogenetic Reconstruction - For the Maximum Parsimony Problem

Karla E. Vazquez-Ortiz, Jean-Michel Richer, David Lesaint

Abstract

The phylogenetic reconstruction is considered a central underpinning of diverse field of biology like: ecology, molecular biology and physiology. The main example is modeling patterns and processes of evolution. Maximum Parsimony (MP) is an important approach to solve the phylogenetic reconstruction by minimizing the total number of genetic transformations, under this approach different metaheuristics have been implemented like tabu search, genetic and memetic algorithms to cope with the combinatorial nature of the problem. In this paper we review different strategies that could be added to existing implementations to improve their efficiency and accuracy. First we present two different techniques to evaluate the objective function by using CPU and GPU technology, then we show a Path-Relinking implementation to compare tree topologies and finally we introduces the application of these techniques in a Simulated Annealing algorithm looking for an optimal solution.

References

  1. Allen, B. J. and Steel, M. (2001). Subtree transfer operations and their induced metrics on evolutionary trees.
  2. Annals of Combinatorics, 5(1):1-15.
  3. Bader, D. A., Chandu, V. P., and Yan, M. (2006). Exactmp: An efficient parallel exact solver for phylogenetic tree reconstruction using maximum parsimony. In Parallel Processing, 2006. ICPP 2006. International Conference on, pages 65-73. IEEE.
  4. Barker, D. (2003). LVB: parsimony and simulated annealing in the search for phylogenetic trees. Bioinformatics, 20(2):274-275.
  5. Barker, D. (2012). LVB homepage.
  6. Felsenstein, J. (2003). Inferring phylogenies. Sinauer Associates.
  7. Fitch, W. (1971). Towards defining course of evolution: minimum change for a specified tree topology. Systematic Zoology, 20:406-416.
  8. Foulds, L. R. and Graham, R. L. (1982). The steiner problem in phylogeny is np-complete. Advances in Applied Mathematics, 3(1):43-49.
  9. Gladstein, D. S. (1997). Efficient incremental character optimization. Cladistics, 13(1-2):21-26.
  10. Glover, F., Laguna, M., and Mart, R. (2000). Fundamentals of scatter search and path relinking. Control and Cybernetics, 39:653-684.
  11. Goëffon, A. (2006). Nouvelles heuristiques de voisinage et mémétiques pour le problème maximum de parcimonie. PhD thesis, LERIA, Université d'Angers.
  12. Goloboff, P. (1999). Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics, 15:415-428.
  13. Goloboff, P. (2002). Techniques for analyzing large data sets. In DeSalle R., G. G. and Wheeler W., e., editors, Techniques in Molecular Systematics and Evolution, page 7079. Brikhuser Verlag, Basel.
  14. Goloboff, P. A. (1993). Nona, version 2.0. Computer Program and Manual Distributed by the Author.
  15. Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). Tnt, a free program for phylogenetic analysis. Cladistics, 24(5):774-786.
  16. Gusfield, D. (1997). Algorithms on strings, trees, and sequences: Computer science and computational biology. Cambridge University Press, 1st. edition.
  17. Hartigan, J. A. (1973). Minimum mutation fits to a given tree. Biometrics, 29:53-65.
  18. Hendy, M. D. and Penny, D. (1982). Branch and bound algorithms to determine minimal evolutionary trees. Mathematical Biosciences, 59(2):277-290.
  19. Hennig, W. (1966). Phylogenetic systematics. Phylogeny. University of Illinois Press, Urbana.
  20. Hillis, D. M., Moritz, C., and Mable, B. K. (1996). Molecular systematics. Sinauer Associates Inc., Sunderland, MA, 2nd. edition.
  21. Kasap, S. and Benkrid, K. (2011). High performance phylogenetic analysis with maximum parsimony on reconfigurable hardware. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 19(5):796- 808.
  22. Maddison, D. R. (1991). The discovery and importance of multiple islands of most-parsimonious trees. Systematic Zoology, 40(3):315-328.
  23. Penny, D., Foulds, L. R., and Hendy, M. D. (1982). Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature, 297:197-200.
  24. Ribeiro, C. C. and Vianna, D. S. (2005). A GRASP/VND heuristic for the phylogeny problem using a new neighborhood structure. International Transactions in Operational Research, 12(3):325-338.
  25. Ribeiro, C. C. and Vianna, D. S. (2009). A hybrid genetic algorithm for the phylogeny problem using pathrelinking as a progressive crossover strategy. International Transactions in Operational Research, 16(5):641-657.
  26. Richer, J.-M. (2008). Three new techniques to improve phylogenetic reconstruction with maximum parsimony. Technical report, LERIA, University of Angers, France.
  27. Richer, J.-M. (2013). Improvevement of fitch function for maximum parsimony in phylogenetic reconstruction with intel avx2 assembler instructions. Technical report, LERIA, University of Angers, France.
  28. Richer, J. M., Goëffon, A., and Hao, J. K. (2009). A memetic algorithm for phylogenetic reconstruction with maximum parsimony. Lecture Notes in Computer Science, 5483:164-175.
  29. Ronquist, F. (1998a). Fast fitch-parsimony algorithms for large data sets. Cladistics, 14(4):387-400.
  30. Ronquist, F. (1998b). Fast fitch-parsimony algorithms for large data sets. Cladistics, 14(4):387-400.
  31. Sober, E. (1993). The nature of selection: Evolutionary theory in philosophical focus. University Of Chicago Press.
  32. Sridhar, S., Lam, F., Blelloch, G. E., Ravi, R., and Schwartz, R. (2007). Direct maximum parsimony phylogeny reconstruction from genotype data. BMC Bioinformatics, 8(472).
  33. Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. (1996). Phylogeny reconstruction. In Molecular Systematics, chapter 11, pages 411-501. Sinauer Associates, Inc., Sunderland, MA, 2nd. edition.
  34. Vazquez-Ortiz, K. E. (2011). Metaheurísticas para la resoluci ón del problema de máxima parsimonia. Master's thesis, LTI, Cinvestav - Tamaulipas, Cd. Vitoria, Tamps. Mexico.
  35. Vázquez-Ortiz, K. E., Richer, J.-M., Lesaint, D., and Rodriguez-Tello, E. (2014). A bottom-up implementation of path-relinking for phylogenetic reconstruction applied to maximum parsimony. In Computational Intelligence in Multi-Criteria Decision-Making (MCDM), 2014 IEEE Symposium on, pages 157-163. IEEE.
  36. White, W. T. J. and Holland, B. R. (2011). Faster exact maximum parsimony search with xmp. Bioinformatics, 27(10):1359-1367.
  37. Xiong, J. (2006). Essential Bioinformatics. Cambridge University Press, 1st. edition.
Download


Paper Citation


in Harvard Style

Vazquez-Ortiz K., Richer J. and Lesaint D. (2016). Strategies for Phylogenetic Reconstruction - For the Maximum Parsimony Problem . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 226-236. DOI: 10.5220/0005702902260236


in Bibtex Style

@conference{bioinformatics16,
author={Karla E. Vazquez-Ortiz and Jean-Michel Richer and David Lesaint},
title={Strategies for Phylogenetic Reconstruction - For the Maximum Parsimony Problem},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2016)},
year={2016},
pages={226-236},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005702902260236},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2016)
TI - Strategies for Phylogenetic Reconstruction - For the Maximum Parsimony Problem
SN - 978-989-758-170-0
AU - Vazquez-Ortiz K.
AU - Richer J.
AU - Lesaint D.
PY - 2016
SP - 226
EP - 236
DO - 10.5220/0005702902260236