
A Threatmodel for Trust-based Systems Consisting of Open,
Heterogeneous and Distributed Agents

Jan Kantert1, Lukas Klejnowski1, Sarah Edenhofer2, Sven Tomforde2 and Christian Müller-Schloer1

1Institute of Systems Engineering, Leibniz University Hanover, Appelstr. 4, 30167, Hanover, Germany
2Organic Computing Group, Augsburg University, Eichleitnerstr. 30, 86159, Augsburg, Germany

Keywords: Multi-agent-systems, Trust, Threatmodel, Norms, Desktop-grid System, Agents.

Abstract: Information and communication technology witnesses a raise of open, distributed systems that consist of
various heterogeneous elements. Within such an environment, individual elements have to efficiently fulfil their
goals, which may require cooperation with others. As a consequence, a variety of threats appears that need to
be handled and circumvented in the entity’s behaviour. One major technical approach to provide a working
environment for such systems is to introduce technical trust. In this paper, we present a basic threat model that
comprises the most important challenges in this context – related to the basic system and the trust management,
respectively. In order to illustrate the particular hazardous aspects, we discuss a Desktop Computing Grid
application as scenario.

1 INTRODUCTION

Open Distributed Systems are comprised of an un-
known number of autonomous entities that are het-
erogeneous with respect to goals, capabilities, pref-
erences and behaviours, see (Centeno and Billhardt,
2011). Additionally, the system is open, hence enti-
ties from unknown sources, with code from unknown
programmers can enter and leave the system at any
time, cf. (Hermoso et al., 2010). Finally, due to their
distributed nature and autonomy, there is no form of
direct or central control in such a system, see (Centeno
et al., 2011).

It is generally agreed that such a system, though
beneficial in many ways, introduces a large amount
of uncertainty among the participating entities,
cf. (Wierzbicki, 2010). Some of them apply adver-
sary strategies to exploit or damage these systems. A
commonly used solution to this is to equip such a
system with a Trust Management (TM) system: By rat-
ing each other’s behaviour according to clear defined
rules, the participants of such a system can discern
cooperative from adversary participants and hence re-
duce their uncertainty about the system. We refer
to the group of cooperative agents that have positive
mutual trust-relations, as Trusted Community, see (Kle-
jnowski, 2014). We hence relate to these agents when
speaking of threats.

In this paper, we present an exemplary threat model

for ODS (Open Distributed System), based on the ex-
ample of a Trusted Desktop Grid. This model can be
used to (a) identify which threats can be mitigated by
setting up an according TM System among the partic-
ipants, and (b) identify threats that cannot be tackled
by TM, but rather require a security management sys-
tem on a lower level. A more generic third type of
threats, the attacks on TM systems themselves, is then
summarised by relating to the according literature.

The remainder of this paper is organised as follows:
In Section 2, we present our application scenario. Af-
terwards, we relate our scenario to a larger class of
systems in Section 3. Thereafter, we introduce threats
for such systems and classify them according to the
STRIDE model in Section 4. Finally, we conclude in
Section 5.

2 APPLICATION SCENARIO:
THE TRUSTED DESKTOP GRID

As an application scenario, we investigate open grid
computing systems which can host numerous dis-
tributable workloads, e.g. distributed rendering of
films. The system is considered open since there is
no central controlling entity, all communication is
performed peer-to-peer, and agents are free to join.
Worker nodes belong to different administrative do-

Kantert, J., Klejnowski, L., Edenhofer, S., Tomforde, S. and Müller-Schloer, C.
A Threatmodel for Trust-based Systems Consisting of Open, Heterogeneous and Distributed Agents.
DOI: 10.5220/0005696801730180
In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 1, pages 173-180
ISBN: 978-989-758-172-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

173



mains, thus, benevolent behaviour cannot be assumed.
Nodes participate voluntarily to submit work into the
system and, thereby, achieve a speedup of their jobs.
However, a successful system relies on reciprocity:
Agents also have to compute work units for other sub-
mitters.

To overcome the inherent problems of an open
system where no particular behaviour can be assumed,
we introduce a trust metric. Agents receive ratings
for all their actions from their particular interaction
partners. This allows others to estimate the future
behaviour of a certain agent based on its previous
actions. To perform this reasoning, a series of ratings
for a certain agent can be accumulated to a single
reputation value using the trust metric.

Autonomous agents need to become aware of the
expected behaviour in the system. Therefore, we influ-
ence the desired actions by norms. These norms are
valid for an Action in a certain Context and, thereby,
guide the agents. To enforce the behaviour, they im-
pose a Sanction if violated or offer an Incentive if
fulfilled. For details about normative control in Multi-
Agent Systems, see (Pitt et al., 2011).

Emergent behaviour as a consequence of self-
organised interactions among distributed agents can
result in positive and negative effects. Establishing
implicit trust communities by increasing cooperation
with other well-trusted agents and consequently iso-
lating malicious agents to a certain degree is consid-
ered as positive emergent behaviour in this context.
In contrast, negative emergent behaviour typically im-
pacts the overall system performance and consequently
needs to be countered. In the following, we describe
two scenarios within the TDG example to illustrate the
impact of such effects.

During operation, agents are free to join the
Trusted Desktop Grid (TDG). In case of a potentially
large group of malicious agents joining the system
simultaneously, we can observe a negative emergent
effect with respect to the actual trust level of currently
participating agents. For instance, a group of colluding
Freeriders will load the system with additional work
packages, while simultaneously rejecting to work for
others. Consequently, benevolent agents will also re-
ject work packages issued by the Freeriders (follow-
ing a tit-for-tat concept). As a result, we can observe
numerous bad ratings for both, benevolent and uncoop-
erative agents. In sum and on average, the trust levels
will drop drastically resulting in a system state where
agents do not trust each other any more. We consider
such a situation as a disturbed system state; this emer-
gent situation is called “trust breakdown“ (Steghöfer
et al., 2010).

To prevent problems such as Trust Breakdowns and

increase the robustness of the system, we introduced
an agent organisation called explicit Trusted Commu-
nity (eTC), see (Bernard et al., 2011). When a group
of agents notices that they mutually trust each other,
they can proceed to form an eTC. They elect a leader -
called the Trusted Community Manager (TCM). This
TCM performs maintenance tasks inside the commu-
nity. Agents can then reduce security measures such
as replication of work units and are able to gain a
better speedup. Members of an eTC can easier resist
attacks, because they can always just cooperate inside
the community and ignore the environment.

3 APPLICABLE SYSTEM CLASS

We first describe the system class that the following
threat model can be applied to. This is based on the
exemplary description of the Trusted Desktop Grid
(TDG), an instance of this class. A typical example
of a technical Open Distributed System (ODS) that
benefits from the operation of a Trust Management
system (TM), is an open Desktop Grid (DG) System.
In the following we exactly classify to which instances
of this system class this applies.

DG Systems are based on the idea of using shared
idle resources (also referred to as “harvesting”) of
usual personal computers, in order to allow for fast and
parallel computations for suited applications. Desk-
top Grid Systems are distinguished from (traditional)
Grid Systems: The latter operate with dedicated and
static, often homogeneous, machines (e.g. clusters)
in order to provide computation as a service. Mostly
the scheduling of jobs is centralised and machines
can be fully controlled. Desktop Grid Systems on
the other hand, are a network of rather unreliable ma-
chines providing computational power on best-effort
basis in often dynamic environments. They are mostly
decentralised, and direct control is not possible. In
traditional Grid Computing, research is often focused
on efficient and fair scheduling, management of the
dedicated machines (e.g. fail-over mechanisms, redun-
dancy etc.) and efficient processing of workflows with
highly interdependent tasks (e.g. via MPI (Walker and
Dongarra, 1996)). Realisations of these systems are
mostly based on either the Globus Toolkit (Walker and
Dongarra, 1996) or Web-Service-based standards (Fos-
ter et al., 2004). In the remainder of this paper, tradi-
tional Grid Systems will not be further referred to,
mainly for their lack of openness and uncertainty
among the participants (no ODS) and thus low mo-
tivation for the application of Trust Management.

Despite the clear differences to traditional Grid
computing systems, Desktop Grid System realisations

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

174



are nonetheless rather fragmented. In the following,
the exact type of Desktop Grid System used as refer-
ence, is classified according to the taxonomy presented
in (Choi et al., 2008). This taxonomy is built upon
four main perspectives containing several properties to
classify DG systems. The main categories are System,
Application, Resource and Scheduler. The strongest
classification is provided by the System perspective,
therefore firstly the properties of this perspective are
described: The resource provider property discerns
two main classes of Desktop Grid Systems: Enterprise
and volunteer-based DG Systems. Enterprise (as well
as academic) Desktop Grids are networks within a
(virtual) organisation, which provide their computa-
tional service mainly for members of this organisation.
Usually, the connectivity in such systems is rather
high, while volatility, machine heterogeneity and dis-
tribution of control are low. The most fundamental
difference to volunteer-based Desktop Grid Systems is
however the user base: Participating clients are mostly
from the same administrative domain (sometimes even
within a local area network) as the organisation pro-
viding and operating this service. Users are thus often
known personally and adversary behaviour disturb-
ing the system is seldom an issue. A typical example
for an Enterprise DG is a network between research
institutions from a domain that depends on computa-
tionally intensive experiments (e.g. particle physics).
Researchers can benefit from the fact that nowadays
computing power is often abundantly present and often
not used exhaustedly and consistently. This provides
for opportunities to share these resources with other re-
searchers having different experimentation schedules
and in turn take advantages of other institutions’ re-
sources when experiments are conducted. Realisations
of Enterprise Desktop Grid Systems are often based on
Condor (Litzkow et al., 1988) or similar frameworks.
In contrast, volunteer-based Desktop Grid Systems
rely on mostly anonymous users, connected through
the Internet, and willing to donate their resources to
other users. Volunteers are per se a greater risk than
organisation members or even owners of dedicated ma-
chines: By volunteering, a user gives no guarantee as
to which degree it will provide any service and because
of anonymity, adversary behaviour of users can be a se-
rious issue. Additionally, participating clients are het-
erogeneous in terms of provided computational power,
storage capacity and availability. Consider for example
users from varying time zones or users connecting only
on rare occasions. In summary, the resource provider
property discerns Enterprise and volunteer-based Desk-
top Grid Systems. Enterprise DGs are closed systems
(as opposed to Open Distributed Systems) and there-
fore not suited as hosting system for the application of

Trust Communities. From here on, the classification
of the Trusted Desktop Grid as a volunteer-based DG
is adopted and the further classification according to
the properties of the system perspective is applied to
this type of systems only.

Further classification of the TDG is based on the
organisation property: Centralised DGs are based on
a client-server-volunteer model while Distributed DGs
are managed without servers. In Centralised DGs the
servers are mainly responsible for managing volun-
teers (bootstrapping, identification, exclusion etc.) and
scheduling jobs created by the clients on volunteer
machines. Most centralised Desktop Grids use the
following scheme: Clients generate jobs and contact
the servers which then choose tp appropriate volunteer
machines and inform them of new tasks to process.
Re-scheduling in case of failures (volunteer machines
can be unreliable) and result verification follow next,
before the clients are requested to fetch the task results.
It is important to note, that in those systems volunteer
nodes do not submit jobs to the server. Therefore, vol-
unteers need incentives to participate in the systems.
A common approach to this is to establish a DG for
scientific computations that benefit the greater public
good and motivate users connected to the Internet to
donate their spare resources for this purpose (Ander-
son, 2004). In contrast, Distributed DGs transfer the
management and scheduling mechanism to the clients,
which are then for example responsible for finding
suited volunteer machines. Additionally, Distributed
Desktop Grids can be designed as Peer-To-Peer (P2P)
systems - this not only refers to the connectivity in
the system but more importantly to the fact, that each
grid node can submit jobs to other nodes, thus the
distinction between client and volunteer is not valid
any more. This creates an entirely different motivation
for volunteers to participate compared to Centralised
Desktop Grid Systems: Users are self-interested and
participate in the system in order to let other volun-
teers process tasks from their own computationally
intensive applications, like for example the rendering
of large animation scenes (Patoli et al., 2009). In turn,
they are obliged to donate their own resources to other
users. An exemplary implementation of such a system
is the Organic Grid (Chakravarti et al., 2005).

In summary, the organisation property discerns
between the server-based Centralised DGs and the Dis-
tributed Desktop Grid Systems. The management of
system participants with a centralised server architec-
ture is a closed system approach: Each new system
participant has to contact a server when entering the
system and whenever it interacts with other partici-
pants (consider for example the centralised scheduling
scheme), thus the servers control the participants. In

A Threatmodel for Trust-based Systems Consisting of Open, Heterogeneous and Distributed Agents

175



Table 1: Possible threats class 1 and 2.

Threat Target STRIDE

Class 1:
Inside threat,

System
exploitation

No participation as worker (freeriding) - -
No return of work unit results (hidden freeriding) - -
Submission of false positive trust ratings (collusion) - -
Delegation of accepted work units to other workers,
acting as owner (hidden freeriding) - -

Give false information (performance level, work load)
to avoid work unit processing requests - -

As TC member exploit trustworthiness and lack of
safety means - -

As TC manager exploit trustworthiness, members
dependency and lack of safety means - -

Systematically violate norms Agent -
As TC member violate norms on requests from
outside agents Agent (S)

Propose norms which would allow (unnoticed)
system exploitation by agent Agent (S)

Class 2:
Inside threat,

System
damage

DoS-attack via work unit replication System (D)
DoS-attack or slow-down via fake work units System (D)
As TC manager release norms that threaten the
operation of the system if followed System -

Spreading of malware via work units (or results) System or agent -
DoS-attack via excessive messaging System or agent (D)
Submission of false negative trust ratings
(discrediting attack) System or agent -

Submission of work units with unrealistic processing
conditions (leading to legitimation of negative trust ratings) Agent -

Cancelling of accepted work units (slow-down) Agent -
Return of false work unit results Agent -
As TC manager exclude single agents from the TC
or dissolve the TC entirely Agent -

Accuse other agents of norm violations Agent (D)
Propose destructive norms Agent D

contrast, Distributed DGs distribute the control among
all participants, and interactions are executed directly
between them. Additionally, new participants can en-
ter the system without following the specifications of
servers, and do so anonymously. Therefore, only dis-
tributed systems fulfil our requirements of an Open
Distributed System as application scenario for Trust
Management in general and Trust Communities in par-
ticular.

The remaining two properties of the system per-
spective are scale and platform. The scale property
discerns between internet-based and LAN-based Desk-
top Grid Systems. LAN-based systems are closed
systems controlled within a single administrative do-
main and thus no ODS. Instead the TDG is designed
as internet-based system. The platform property dif-
ferentiates between Web-based and middleware-based
systems in the context of the technical realisation of

a client machine. The Trusted Desktop Grid relies
on a middleware-based solution, however this prop-
erty has no influence on the openness of a system
and can therefore be neglected. This completes the
classification according to the System perspective in
the taxonomy presented in (Choi et al., 2008). In
summary, in this paper, Desktop Grid Systems are re-
ferred to as volunteer-based, distributed, P2P-based,
internet-based DGs with client participation over a DG
middleware.

Again the taxonomy in (Choi et al., 2008) is used
to further classify the TDG according to a selection of
relevant properties from the application and schedul-
ing perspective. The Trusted Desktop Grid is a system
where each agent operates its own scheduler (submit-
ter component) to distribute work units (WUs, also
referred to as tasks in the literature) generated by an
application on the host machine. In the taxonomy,

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

176



Table 2: Possible threats class 3 and 4.

Class 3:
Outside threat,

System
exploitation

Manipulate ReputationDB to improve own reputation
or deteriorate rival reputation (indirect advantage) - T

Sybil attack: Change own identity to appear as new
agent (with no reputation history) - S

Manipulate others processing queues to place
(or prioritize) own work units. - T

Manipulate direct experience history of
interaction partners to hide misbehaviour
and/or appear trustworthy.

- T

Manipulate TC Manager to become TC member - E,T
Manipulate messages with negative trust ratings to
avoid being detected as misbehaving agent - T

Appear as agent with high reputation, TC membership
or TC managing rights (impersonation) - S

Corrupt the election process in order to become TC manager - T
Manipulate messages, work unit results or information
of other agents in order to damage their reputation (rival
management: relative improvement of own reputation
and higher ranking)

- T

Manipulate messages from other submitting agents
to keep preferred worker agents from having a
high workload

- T

Manipulate TC manager messages to change norms
to own benefit - T

Manipulate existing norms to own benefit - T
Prevent unfavourable norms from spreading - T

Class 4:
Outside threat,
System damage

Manipulate ReputationDB (for example rendering
all agents untrustworthy) System E,T

Generate fake rating messages or manipulate existing messages System or agent T
Man in the middle attack to access work unit results or data Agent I
DoS-attack to damage the communication between agents System or agent D
Generate Class 2 agents and control them System or agent R
Introduce contradicting/inconsistent norms to destroy system System or agent D

the property application dependency discerns between
the type of jobs an application produces: Jobs from
Bag-of-tasks (BoT) applications are composed of work
units that can be processed (and thus scheduled) inde-
pendent of each other, whereas all other applications
produce jobs with some form of flow or execution
dependency among the tasks. For the evaluations pre-
sented, BoT-applications were used, as in the majority
of research literature. Additionally, the application
divisibility property classifies jobs according to their
composition flexibility, that is answering the question:
Is the division of a job into work units fixed or can it
be adapted to the current scheduling situation (for ex-
ample available resources and resource performance)?
Again, the Trusted Desktop Grid is capable of both
approaches.

The fine-grained definition of the types of jobs (or
applications producing them) in the TDG now allows
classifying the scheduling in this system according

to the scheduler perspective in the taxonomy. The
most important property to distinguish this system
from other types is the organisation property. This
property describes how scheduling in a Desktop Grid
is implemented. As already defined in the system
perspective, a distributed scheduling scheme was used:
All agents operate their own scheduler and there is no
scheduling of foreign work units. This is in contrast
to the schemes central and “hierarchic scheduling”,
and is a distinctive feature of our system, as most DG
systems evaluated in the literature consider central
or hierarchical scheduling. However, these forms of
scheduling are less challenging from the trust context
and restrict the openness of an according system. The
individual schedulers of the agents further operate in
push mode, which means that agents send out work
unit processing requests to available workers, which
then react with an acknowledgement or a rejection
(scheduling mode property). This allows for example

A Threatmodel for Trust-based Systems Consisting of Open, Heterogeneous and Distributed Agents

177



Table 3: STRIDE model.

S Spoofing Attackers pretend to be someone (or
something) else.

T Tampering Attackers change data in transit or at
rest.

R Repudiation Attackers perform actions that cannot be
traced back to them.

I Information disclosure Attackers steal data in transit or at
rest.

D Denial of service Attackers interrupt a system’s legitimate
operation.

E Elevation of privilege Attackers perform actions they are not
authorised to perform.

to detect free-riding despite decentralised control. The
next relevant scheduling property is the dynamism:
(Dynamic) online and (static) offline scheduling are
discerned. In an open system like the Trusted Desktop
Grid, where host and resource availability are subject
to constant change, only online scheduling is possible.
The final property needed for the TDG scheduling
classification is the scheduling goals property. This
property defines which performance metrics are used
to evaluate the scheduling subsystem in a Desktop
Grid. We apply the speedup metric.

The taxonomy of Desktop Grid Systems followed,
further classifies these systems according to some ad-
ditional properties within the four perspectives. How-
ever, a more elaborate systematic classification is not
applied, as the Trusted Desktop Grid either does not
have strict requirements on the properties or they are
not in the focus of the Trust management applicability.

In addition to threats to the class of systems de-
scribed above, we also model threats to the opera-
tion of Trust-based multiagent organisations (Horling
and Lesser, 2004; Oussalah and Griffiths, 2005; Kle-
jnowski, 2014) in such a system. We do this exemplar-
ily for the application of explicit Trust Communities
(eTC (Klejnowski, 2014)), a Trust-based organisation
with management by a dynamically elected TC man-
ager (TCM).

4 THREATS IN OPEN DESKTOP
GRID SYSTEMS

The application of Trust Management to technical sys-
tems has been pursued with growing popularity in
recent decades, especially with the advent of the inter-
net as a world-wide open distributed system. TM can
be applied to mitigate many specific threats in ODS, as
well as threats in Desktop Grid Systems (Domingues
et al., 2007). However, Open Desktop Grid systems

based on autonomous agents are a rather new approach
and not many TM systems are specifically tied to this
system class. As such, we propose a threat model,
by picking up threats that can be countered by TM
in such a system and threats that cannot be countered
by these means. In this we follow the argumentation
of, e.g., (Castelfranchi and Falcone, 2010), that trust
and security are two conceptually different notions
and that a TM system cannot be expected to work if
there is no underlying security system. This is also
valid if security is understood as facet of trust (Poslad
et al., 2003; Steghöfer et al., 2010). We show this
with the examination of security threats that can lead
to system exploitation or damage despite a working
TM system. On the other hand, assuming there is a
proper security system, a system can nonetheless be
exploited or damaged if there is no, or only improperly
configured TM system. We therefore examine threats
to the system participants that have to be targeted by
such a TM system.

For the modelling of the security threats, we relate
to the famous STRIDE approach (Hernan et al., ). In
this, security threats are characterised according to the
following categories shown in Table 3.

The following threat model is based on the defini-
tion of the function scope of the two concepts trust and
security, stating which class of threats is countered by
which part of the system:

Firstly, we can group threats to the system by the
capabilities the attacking entity owns:

• Inside threats are executed with capabilities an el-
ement of the system (agent) owns due to its auton-
omy. Attackers are owners of agents representing
them and achieving their goals.

• Outside threats are executed with capabilities
that are beyond those of elements of the system
(STRIDE model) and usually require additional
software to be performed. Attackers do not neces-
sarily own an agent participating in the system.

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

178



Table 4: Threat types.

System exploitation System damage
Inside
threat Class 1 Class 2

Outside
threat Class 3 Class 4

Table 5: Responses to threats.

Threat class Responsible sub-system
Class 1 Trust Management system
Class 2 Trust Management system
Class 3 Security system
Class 4 Security system

Secondly, we can group the attackers according to their
objectives:

• System exploitation is the objective to gain advan-
tages from the system for the own benefit (perfor-
mance) without contributing accordingly.

• System damage represents a class of objectives
that do not aim at improving the performance, but
range from the aim to damage the operation of the
system or elements of the system to specific aims
like stealing a certain password.

Note that we do not consider threats that appear as
attacks although the “attacker” has no respective ob-
jective. This is the case when faulty hardware is in-
volved and for example communication affected. We
classify the threats with respect to the capabilities and
objectives of the attacker in Table 4.

In this model, we focus on threats in a Trusted
Desktop Grid System. Additionally, we provided the
STRIDE classification for outside threats. In the fol-
lowing, threats comprising the four classes are listed
in Table 1 and Table 2. Table 5 lists the sub-systems
responsible to counter each threat class. In addition, a
Trust Management as such can be the target of secu-
rity violations, cf. (Marmol and Pérez, 2009) for an
elaborate analysis of this generic class of threats.

5 CONCLUSION

This paper introduced a threat model for open, dis-
tributed systems that make use of technical trust to
counter challenges related to uncertainty of agent be-
haviour. Based on the Trusted Desktop Computing
Grid system as application scenario, we discussed
threats that appear in the context of such systems. The
basic idea of this work is to specify and categorise
these threats to find generalised patterns that counter
them.

Future work deals with the question of how this
model can be extended towards a unified notion of
threats for open, heterogeneous agent collections; this
is assumed to provide a basis for the development pro-
cesses of such systems, as possibly threats are mapped
towards strategies to circumvent the negative impacts.

ACKNOWLEDGEMENTS

This research is funded by the research unit “OC-
Trust” (FOR 1085) of the German Research Foun-
dation (DFG).

REFERENCES

Anderson, D. P. (2004). BOINC: A System for Public-
Resource Computing and Storage. In Proceedings of
the 5th IEEE/ACM International Workshop on Grid
Computing, GRID ’04, pages 4–10, Washington, DC,
USA. IEEE.

Bernard, Y., Klejnowski, L., Çakar, E., Hähner, J., and
Müller-Schloer, C. (2011). Efficiency and Robustness
Using Trusted Communities in a Trusted Desktop Grid.
In Proc. of SASO Workshops, pages 21–26, Michigan,
US. IEEE.

Castelfranchi, C. and Falcone, R. (2010). Trust Theory: A
Socio-Cognitive and Computational Model, volume 18.
John Wiley & Sons, Chichester, UK.

Centeno, R. and Billhardt, H. (2011). Using incentive mech-
anisms for an adaptive regulation of open multi-agent
systems. In Proceedings of the Twenty-Second in-
ternational joint conference on Artificial Intelligence-
Volume Volume One, pages 139–145. AAAI Press.

Centeno, R., Billhardt, H., and Hermoso, R. (2011). An
adaptive sanctioning mechanism for open multi-agent
systems regulated by norms. In Tools with Artificial
Intelligence (ICTAI), 2011 23rd IEEE International
Conference on, pages 523–530. IEEE.

Chakravarti, A. J., Baumgartner, G., and Lauria, M. (2005).
The organic grid: self-organizing computation on a
peer-to-peer network. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on,
35(3):373–384.

Choi, S., Buyya, R., Kim, H., and Byun, E. (2008). A Taxon-
omy of Desktop Grids and its Mapping to State of the
Art Systems. Technical report, Grid Computing and
Dist. Sys. Laboratory, The University of Melbourne.

Domingues, P., Sousa, B., and Moura Silva, L. (2007).
Sabotage-tolerance and Trustmanagement in Desktop
Grid Computing. Future Generation Computer Sys-
tems, 23(7):904–912.

Foster, I., Jennings, N. R., and Kesselman, C. (2004). Brain
meets brawn: Why grid and agents need each other. In
Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems-
Volume 1, pages 8–15. IEEE Computer Society.

A Threatmodel for Trust-based Systems Consisting of Open, Heterogeneous and Distributed Agents

179



Hermoso, R., Billhardt, H., and Ossowski, S. (2010). Role
evolution in open multi-agent systems as an informa-
tion source for trust. In Proceedings of the 9th In-
ternational Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1, pages 217–
224. International Foundation for Autonomous Agents
and Multiagent Systems.

Hernan, S., Lambert, S., Ostwald, T., and Shostack,
A. Uncover security design flaws using the stride
approach (2006). URL: http://msdn. microsoft.
com/en-us/magazine/cc163519. aspx [accessed 2010-
01-12][WebCite Cache].

Horling, B. and Lesser, V. (2004). A survey of multi-agent
organizational paradigms. The Knowledge Engineering
Review, 19(04):281–316.

Klejnowski, L. (2014). Trusted Community: A Novel Multia-
gent Organisation for Open Distributed Systems. PhD
thesis, Leibniz Universität Hannover.

Litzkow, M. J., Livny, M., and Mutka, M. W. (1988). Condor-
a hunter of idle workstations. In Distributed Computing
Systems, 1988., 8th International Conference on, pages
104–111. IEEE.

Marmol, F. G. and Pérez, G. M. (2009). Security threats
scenarios in trust and reputation models for distributed
systems. computers & security, 28(7):545–556.

Oussalah, M. and Griffiths, N. (2005). Cooperative clans.
Kybernetes, 34(9/10):1384–1403.

Patoli, Z., Gkion, M., Al-Barakati, A., Zhang, W., Newbury,
P., and White, M. (2009). How to build an open source
render farm based on desktop grid computing. In Wire-
less Networks, Information Processing and Systems,
pages 268–278. Springer.

Pitt, J., Schaumeier, J., and Artikis, A. (2011). The Ax-
iomatisation of Socio-Economic Principles for Self-
Organising Systems. In Self-Adaptive and Self-
Organizing Systems (SASO), 2011 Fifth IEEE Inter-
national Conference on, pages 138–147, Michigan,
US. IEEE.

Poslad, S., Charlton, P., and Calisti, M. (2003). Specifying
standard security mechanisms in multi-agent systems.
In Trust, Reputation, and Security: Theories and Prac-
tice, pages 163–176. Springer.

Steghöfer, J.-P., Kiefhaber, R., Leichtenstern, K., Bernard,
Y., Klejnowski, L., Reif, W., Ungerer, T., André, E.,
Hähner, J., and Müller-Schloer, C. (2010). Trustworthy
Organic Computing Systems: Challenges and Perspec-
tives. In Proc. of ATC 2010, pages 62–76, Boston, MA.
Springer.

Walker, D. W. and Dongarra, J. J. (1996). Mpi: a standard
message passing interface. Supercomputer, 12:56–68.

Wierzbicki, A. (2010). Trust and fairness in open, distributed
systems, volume 298. Springer.

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

180


