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With the increasing security breaches nowadays, automated gait recognition has recently received increasing

importance in video surveillance technology. In this paper, we propose a method for human identification at
distance based on Fuzzy Local Binary Pattern (FLBP). After the Gait Energy Image (GEI) is generated as
a spatiotemporal summary of a gait video sequence, a multi-region partitioning is applied and FLBP based
features are extracted for each region. We also evaluate the performance under the variation of some factors
including viewing angle, clothing and carrying conditions. The experimental work showed that GEI-FLBP
with partitioning has remarkably enhanced the identification accuracy.

1 INTRODUCTION

Biometric technology has witnessed great advances in
the past. However, common modalities such as face
and fingerprint require controlled working conditions
such as direct physical contact, closeness to acqui-
sition devices, predefined views, and inevitable sub-
ject cooperation. Relatively recent, gait recognition
has been shown to be an attractive alternative or com-
plementary behaviorial biometric. Gait is believed to
have a unique pattern for each person in normal con-
ditions. Moreover, it has the ability to mitigate the
above mentioned requirements. It can have a feasible
application in visual surveillance identification. Sub-
jects are identified at distance (e.g. 10 m) based on
the way they walk. Gait recognition doesn’t require
the subject under study to be close to the acquisi-
tion device or standing at a predefined viewing an-
gle. In gait-based systems, subjects can be identified
from low-resolution or infra-red images under differ-
ent conditions such as wearing coats, carrying objects,
or walking on different surfaces. A recent review of
current techniques of gait recognition and modelling
is present in (Lee et al., 2014).

Human identification approaches based on gait
can be either model-based or model free. However,
many of the research attempts are model-free due
to the high computational cost and limited perfor-
mance of model based methods (Zhang et al., 2010).
Different model-free methods have been proposed in
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the literature using various methods for feature ex-
traction. One of the excellent methods for texture
representation is local binary pattern (LBP), which
was first proposed in 1996 by Ojala et al. (2002).
It has been extensively utilized in a variety of re-
search fields and has demonstrated notable perfor-
mance (Brahnam et al., 2014). LBP has been used in
face identification and expression recognition (Aho-
nen et al., 2006; Zhao and Pietikainen, 2007). A
few attempts have been reported in the literature that
utilize LBP for gait recognition. For example, Kel-
lokumpu et al. (2009) proposed a new gait recogni-
tion method based on using LBP from Three Orthog-
onal Planes (LBP-TOP) that spatiotemporally repre-
sent the human movements. Hu et al. (2013) em-
ployed LBP to encode the motion flow information.
In these two examples, only crisp LBP was used and
was shown to be an effective texture representation.
However, to cope with uncertainties that may result
from noisy images, lakovidis et al. (2008) incorpo-
rated fuzzy logic with LBP and named it FLBP.

In this work, we investigate the performance of
applying fuzzy local binary patterns (FLBP) to ex-
tract more discriminative gait features from the Gait
Energy Image (GEI) (Han and Bhanu, 2006a). GEI
overcomes storage and computation burden of tem-
poral model-free approaches by representing the hu-
man walking sequence in a single image conserving
motion temporal properties. We also study the perfor-
mance for different number of non-overlapping parti-
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tions of GEL

The reminder of this paper is organized as follows.
Section 2 briefly reviews related work. Section 3 ex-
plains the proposed approach. Subsequently, experi-
mental work on CASIA B gait dataset is discussed in
Section 4. Finally, Section 5 concludes the paper.

2 RELATED WORK

Niyogi and Adelson (1994) presented an early at-
tempt to model the image sequence of a person in
spatiotemporal space dimensions. A model was fit
on the extracted subject’s contour and the model pa-
rameters were used for feature extraction. Lee and
Grimson (2002) divided the original silhouette into
seven parts, and extracted shape features consisting
of ellipse fitting parameters of each region. Bhanu
and Han (2002) estimated the human motion model
parameters using a least-square fit to project the 3D
kinematic motion into 2D silhouettes. Then, the esti-
mated parameters were used to extract gait features.

On the other hand, model-free approaches (Ran
et al., 2007; Ho et al., 2009; Zhang et al., 2010; Han
and Bhanu, 2006a; Chen et al., 2010; Nizami et al.,
2010) used static and dynamic components instead of
fitting a model for the human motion. The static com-
ponent reflects the shape and size of the person’s body
whereas the dynamic component reflects the move-
ment dynamics. Examples of static features include
height, width, stride length, and silhouette bounding
box lengths. Frequency and phase of movement are
examples of dynamic features.

Kale et al. (2003) proposed another algorithm to
track the walker and extract his/her canonical pose.
They used optical flow to discover the walking an-
gle and then wrapping the image to the new canonical
pose projection. The height and leg dynamics fea-
tures were used. This resulted in encouraging recog-
nition rate using the baseline algorithm of Sarkar et al.
(2005).

Some other gait recognition approaches used the
period of gait cycles as gait features. Ran et al.
(2007) used two different methods to extract the pe-
riod: Maximal Principal Gait Angle (MPGA) and
the Fourier transform. They used the input and out-
put signals generated by Voltage Controlled Oscilla-
tor (VCO) to get the cycle period as the phase differ-
ence of the two signals. Ho et al. (2009) used both
static and dynamic features to determine the gait cy-
cle period. Static features were the motion vector his-
tograms and the dynamic features were the Fourier
descriptors. They used Principal Component Analy-
sis (PCA) and Multiple Discriminant Analysis to re-

duce the feature dimensionality. For the recognition
process, they used the nearest neighbor classifier.

Kale et al. (2002) used the width vector feature
analysis proposed in (Kale et al., 2004) to identify
humans through their gaits. Width vector is the dif-
ference between the left and right boundaries in the
binary silhouette representation space. As a classifier,
they used Hidden Markov Model (HMM) for recog-
nition. The main drawback of their approach is that
it requires huge training data (more than 5,000 sam-
ples), which is not practical in gait application where
the data is very limited. Moreover, HMM perfor-
mance is sensitive to parameters initialization such as
the number of states. Also, the viewing angle affects
the overall recognition performance.

Zhang et al. (2010) proposed a new gait fea-
ture representation and called it Active Energy Image
(AEI). AEI shows the actively moving regions. Suc-
cessive frames are subtracted from each other and all
differences are then summed and normalized. AEI re-
duces the effect of noise on the silhouette images. The
authors applied two-dimensional Locality Preserving
Projections (2D-LPP) to reduce dimensionality. They
got high rate of recognition on the CASIA B dataset.

Wang et al. (2002) combined static and dynamic
features to achieve high accuracy on the Soton gait
database. The bidimensional silhouette was converted
into unidimensional distance signal. For each sil-
houette, the distance from the origin into predefined
points on the boundary of the silhouette was com-
puted to represent the dynamic features. All distance
signals were normalized using the magnitude and then
exposed to eigen-based analysis for dimensionality
reduction. Features like height and aspect ratios of
the silhouette were used as static features and com-
bined with the dynamic features to get the benefits of
both. For recognition, a nearest neighbor technique
was used.

Lee (2001) divided the binary silhouette of a walk-
ing human into seven elliptical-shaped regions. The
walking person was perpendicular to the image plane.
View and appearance based approach was used to
transform the person image into the image plane. Fea-
tures were extracted from the seven ellipses in form of
parameters. However, the parameters were exposed
to noise and it was difficult to find the periodicity us-
ing these features. As an efficient solution, mean and
standard deviation of the features were computed to
be used as the final summary features.

Han and Bhanu (2006a) proposed a new effective
method to summarize the silhouette sequence spa-
tiotemporally into a Gait Energy Image (GEI). Gait
cycle was extracted from the gait sequence of silhou-
ette and then all involved frames were summed and
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normalized to get the GEI image. GEI describes how
motion proceeds and which regions are more involved
in motion, the brighter it is in the GEI image. Sev-
eral gait recognition approaches relied on features ex-
tracted from GElIs (Li et al., 2012; Huang et al., 2013;
Wang et al., 2014; Mansur et al., 2014). However,
they used reduced-dimensionality GEIs or applied the
feature extraction algorithm on the holistic GEI.

Chen et al. (2010) proposed a dimensionality re-
duction method called tensor-based Riemannian man-
ifold distance-approximating projection (TRIMAP).
A graph was constructed from the given data in a
way that preserves the geodesic distance between
data points. Then, the graph was projected into a
lower dimensional space by tensor-based optimiza-
tion methods. The authors used Gabor filter to ex-
tract features from GEI representation of gait image
sequences and applied their dimensionality reduction
on the extracted features.

Nizami et al. (2010) divided the whole gait se-
quence into subsets and derived their own summariza-
tion method called Moving Motion Silhouette Images
(MMS]) for each subset. Independent Component
Analysis (ICA) was used for dimensionality reduc-
tion purpose. Probabilistic Support Vector Machine
(SVM) was used to classify the independent compo-
nents. They evaluated the method on CASIA A and
SotonBig datasets.

Abdelkader (2002) tracked the walker in video
surveillance using bounding boxes. The frequency of
walking and stride length were then extracted through
these bounding boxes. To reduce the effect of the pose
of the walker, the height was included as a feature as
well. The recognition rate was 51% and enhanced to
65% using 2-dimensional and 4-dimensional feature
vectors respectively.

Lu and Zhang (2007) proposed a fusion strat-
egy to improve the classification performance in gait-
based human identification. Three features were used:
Fourier descriptor, wavelet descriptor, and pseudo-
Zernike moment. First, the silhouettes were extracted
and binarized. Then, the three types of features were
extracted from the binary silhouettes and ICA was
used for dimensionality reduction. The authors per-
formed the fusion on the decision level not the feature
level. The match scores for each feature in each view
were fused using the product of sum fusion strategy.
Genetic fuzzy SVM (GFSVM) was used as the clas-
sifier. The experiments were conducted on CASIA A
(20 subjects) and AUXT (50 subjects) datasets. Each
subject has 3 different views and 4 sequences in each
view. They achieved 95% recognition rate.
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Figure 1: Gait recognition framework.

3 METHODOLOGY

In this section, we describe the proposed methodol-
ogy for gait recognition. Figure 1 shows an outline of
the proposed framework. Our approach is based on
the generation of GEI and applying FLBP to extract
effective features. However, unlike earlier GEI-based
approaches for gait recognition, which mainly utilize
the holistic GEI image, our approach applies FLBP
feature extraction in non-overlapped regions.

3.1 Motion Sequence Representation

Human silhouettes are extracted for various motion
frames by background subtraction and thresholding,
shadow elimination, morphological postprocessing
and normalization. GEI image is then calculated to
represent the motion sequence of a particular cycle in
a single image while preserving the temporal infor-
mation. The formula to calculate GEI is as follows
(Han and Bhanu, 2006b):

1 N
G(x,y)ZMZB(x,y,t) (l)
=1

where M is the number of frames in a complete cycle
in the silhouette sequence, x and y are the spatial co-
ordinate, and B(x,y,?) is the binary silhouette of the
t-th frame.

3.2 Feature Extraction

3.2.1 Cirisp Local Binary Patterns (LBP)

The crisp form of local binary patterns uses the prop-
erties of the neighborhood pixels to describe each

pixel. It is computationally simple, efficient, resistant
to gray level changes made by lighting variations. It
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Figure 2: An example of LBP computation.

has the ability to capture fine texture details. The main
idea behind LBP is to extract the local micropatterns
in an image and to describe their distribution through
a histogram (in our case we used 256 bins). Each
pixel in the image pcenser 1s compared to its neighbor-
ing pixels p; and an LBP code is computed as follows
(Brahnam et al., 2014):

N-1

LBP;cnter = Z S(Pi _pcenter)zi 2)
i=0

where N is the number of neighboring pixels and s(x)
is an indicator function such that s(x) = 1 if x > 0 and
s(x) = 0 otherwise. After passing the operator over
the whole image or block, a 256-bin histogram of the
binary patterns is constructed to be used as the feature
vector. Figure 2 shows an illustrative example of LBP
computation with N = 8.

Despite the good characteristics of crisp LBP in
representing textures, it cannot handle all the machine
learning related problems. It uses hard thresholding
in computing its code and thus is more sensitive to
noise and has less discrimination power. Also, the
classifiers used directly affect the performance.

3.2.2 Fuzzy Local Binary Patterns (FLBP)

Fuzzy LBP (FLBP) (Iakovidis et al., 2008) incorpo-
rates fuzzy logic with LBP in order to alleviate the
effect of noise on LBP and increase its distinguish-
ing capability. The difference between crisp LBP and
Fuzzy LBP is that in FLBP each pixel can be char-
acterized by more than one LBP code which in turn
contributes in more than one bin of FLBP histogram.
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Figure 3: An example of FLBP computation.

An example of FLBP computation is shown in
Figure 3. Two membership functions are computed
m () and mo() which indicate to what extent a neigh-
boring pixel p; has a greater or smaller gray value than
Dcenter, tespectively. T is the threshold parameter that

controls the degree of fuzziness. In our experiments,
T is set to 5. The calculations of membership func-
tions are as follows:

0 Pi > Dcenter + T

m()(l) = % Peenter =T < pi < Peenter + T
1 Di < Pcenter — T

3

my (i) = 1—=mo(i) ©)

Unlike LBP, each 3 x 3 neighborhood can be char-
acterized by more than one LBP code. The member-
ship functions m; () and mg() are used to determine
the contribution of each LBP code to a single bin of
the FLBP histogram. The contribution of each LBP is
defined as follows:

8
C(LBP) = I_]Om (i) )

where s; € {0,1}. The sum of all contributions of a
single 3 x 3 neighborhood is always equal to unity as

follows:
255

), cBp)=1 (6)
LBP=0
Crisp LBP histograms may have bins of zero
value. However, FLBP histograms have no zero-
valued bins and thus are more informative than the
crisp LBP.

3.3 Partitioning

First, GEI bounding box is automatically extracted
as a preprocessing step as illustrated left side of Fig-
ure 4. To enhance the performance of FLBP features,
we explored partitioning the GEI into different-sized
non-overlapping predefined regions. The partition-
ing has been conducted as a fraction of the subject’s
height and width and denoted by horizontal and ver-
tical lines. The underlying idea is to separate mov-
ing parts such as head, arms, legs, etc. After nor-
malization and alignment of GEI, we statically set
the boundaries between regions. For example, we set
the head part to include about 19% of the whole sub-
ject’s height. Figure 4 shows two examples of non-
overlapping partitioning into 7 and 5 regions. Differ-
ent partitioning scenarios are evaluated in our experi-
ments.

3.4 Gait Classification
In this stage, a support vector machine (SVM) clas-

sifier with a linear kernel is used for gait recognition
using the extracted feature vectors. There are several
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Table 1: Performance comparison of LBP and FLBP under Normal-Walking covariate without partitioning.

LBP FLBP
Angle(®)

PRE,,, | RECuy Fog ACC PRE,,, | RECguy Fg ACC
0 54.00 56.00 52.00 | 56.90 | 75.00 74.00 72.00 | 74.14
18 68.00 66.00 64.00 | 66.81 79.00 78.00 76.00 | 78.45
36 60.00 60.00 57.00 | 60.35 69.00 67.00 65.00 | 67.24
54 56.00 56.00 53.00 | 56.90 | 74.00 74.00 71.00 | 74.14
72 70.00 68.00 67.00 | 68.54 | 74.00 75.00 73.00 | 75.43
90 72.00 73.00 70.00 | 73.28 | 79.00 78.00 76.00 | 78.02
108 68.00 69.00 66.00 | 68.97 | 75.00 76.00 73.00 | 76.29
126 62.00 62.00 60.00 | 62.50 | 77.00 76.00 74.00 | 75.86
144 62.00 61.00 58.00 | 61.21 76.00 75.00 73.00 | 75.00
162 67.00 69.00 65.00 | 68.97 80.00 78.00 76.00 | 77.59
180 54.00 57.00 52.00 | 57.33 | 73.00 71.00 70.00 | 70.69
Avg. 63.00 63.36 60.36 | 63.80 | 75.55 74.73 72.64 | 74.80

Table 2: Performance comparison of LBP and FLBP under Carrying-Bag covariate without partitioning.

LBP FLBP
Angle(®)
PRE,y; | RECuy | Fung ACC | PRE,, | RECuy | Fuv ACC

0 24.00 28.00 23.00 | 28.02 | 38.00 40.00 36.00 | 40.85
18 43.00 43.00 40.00 | 43.10 | 43.00 43.00 39.00 | 43.54
36 33.00 34.00 31.00 | 34.05 | 28.00 35.00 30.00 | 36.91
54 29.00 30.00 27.00 | 30.60 | 30.00 34.00 29.00 | 33.62
72 34.00 34.00 30.00 | 34.05 | 28.00 35.00 30.00 | 36.72
90 35.00 37.00 34.00 | 37.50 | 38.00 40.00 36.00 | 40.10
108 32.00 34.00 30.00 | 3448 | 33.00 38.00 33.00 | 38.90
126 31.00 31.00 28.00 | 31.47 | 31.00 31.00 28.00 | 31.16
144 25.00 28.00 24.00 | 28.02 | 26.00 31.00 26.00 | 30.16
162 33.00 35.00 31.00 | 35.35 | 38.00 40.00 36.00 | 40.55
180 27.00 29.00 25.00 | 29.74 | 33.00 38.00 33.00 | 37.35
Avg. 31.45 33.00 29.36 | 33.31 33.27 36.82 32.36 | 37.26

Table 3: Performance comparison of LBP and FLBP under Wearing-Coat covariate without partitioning.

LBP FLBP

Angle(°)

PRE,,, | REC,y Favg ACC PRE,,; | REC,y Favg ACC
0 7.00 9.00 7.00 9.91 8.00 11.00 8.00 11.33
18 7.00 9.00 7.00 9.91 14.00 16.00 13.00 16.50
36 13.00 15.00 13.00 15.95 16.00 18.00 14.00 17.62
54 16.00 18.00 15.00 18.10 17.00 20.00 17.00 | 20.64
72 11.00 16.00 12.00 16.38 17.00 20.00 17.00 | 20.36
90 12.00 15.00 12.00 15.09 18.00 21.00 17.00 | 21.07
108 10.00 13.00 10.00 13.79 14.00 16.00 13.00 16.50
126 14.00 17.00 14.00 17.24 16.00 18.00 14.00 18.52
144 9.00 10.00 8.00 10.78 10.00 14.00 10.00 14.81
162 7.00 10.00 6.00 10.78 11.00 13.00 11.00 13.91
180 8.00 11.00 8.00 11.21 11.00 13.00 11.00 13.91
Avg. 10.36 13.00 10.18 13.56 13.82 16.36 13.18 16.83
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Figure 4: Bounding box and two examples of non-
overlapping partitioning of GEI with 7 and 5 regions.

implementations of SVM. In our study, we built our
model using LibSVM which implements one-against-
one for multi-class classification. If k is the number
of subjects under investigation, then k(k — 1) /2 binary
classifiers are constructed. Each classifier is trained
on data belonging to two classes. Then max-win vot-
ing scheme is used to decide the predicted class. If
there is a tie (more than one class has identical max
vote, the one with the smaller index is chosen). We
could also use one-versus-all, but based on the com-
parisons conducted in (Hsu and Lin, 2002), the one-
versus-one training time was shorter with high accu-
racy.

4 EVALUATION

4.1 Dataset

The proposed approach is evaluated on CASIA B;
which is a large multiview gait database maintained
by the Institute of Automation, Chinese Academy of
Sciences (Yu et al., 2006). It includes sequence sam-
ples of 124 subjects of 93 males and 31 females. Gait
sequences for each subject were captured from 11 dif-
ferent views in an indoor environment with simple
background. Each subject was asked to walk 10 times
through a straight line of concrete ground (6 normal
walking, 2 wearing a coat, 2 carrying a bag). At each
walking, there were 11 cameras capturing the subject
walking. Consequently, each subject has 110 video
sequences and the database contains 110 x 124 =
13640 total video sequences for all subjects.

4.2 Performance Measures

We used four measures to evaluate and compare
the performance of gait recognitions based on LBP
and FLBP. These measures are: accuracy, precision,
recall and F-measure. The accuracy is calculated as

follows:

L TP
Yy, (TP +FN)
where S is the number of classes (i.e. subjects), TP;
is the number of subjects that are correctly predicted
to be of class i, and TN; is the number of subjects
of class i that are incorrectly predicted to be of other
classes. The precision measures the relevancy of re-
sults. In other words, it is the fraction of relevant re-
trieved instances. High value of precision indicates
a low false positive rate and shows that the classifier
and features are more accurate. We used the average
precision for all subjects which is defined as follows:

ACC = @)

1g TP,

SL TP+ FP)

PRE,,, = ®)

The recall measures how many relevant instances
are correctly retrieved. High value of recall indicates
a low false negative rate and shows that the classifier
is returning the majority of the positive instances. We
used the average precision for all subjects which is
defined as follows:

1 TP,

RECavg — . Z 7(]“13[ -|-F]\/i)

s & ®

The F-measure is the harmonic mean of precision
and recall for each class. Then we used the average
F-measure as given by:

1S PRE; x REC;
Fae = — 2. o 10
e ; { (PRE; +REC;) } (10)

where PRE; and REC; are the precision and recall for
class i, respectively.

Table 4: Comparison of recognition rates under Normal-
Walking with different non-overlapping partitioning.

o Number of Regions

Angle®) olie 5 7 8 10

0 74.14 96.55 | 97.41 | 98.71 | 98.71
18 78.45 96.98 | 97.85 | 98.71 | 98.28
36 67.24 92.67 | 94.83 | 96.12 | 95.26
54 74.14 95.69 | 95.69 | 97.41 | 98.28
72 75.43 94.4 | 94.83 | 96.55 | 97.41
90 78.02 92.67 | 944 | 95.26 | 95.69
108 76.29 96.55 | 96.12 | 97.85 | 97.85
126 75.86 95.26 | 96.55 | 96.98 | 96.55
144 75 96.55 | 96.12 | 96.55 | 97.41
162 717.59 96.55 | 98.28 | 97.41 | 98.28
180 70.69 96.12 | 98.28 | 99.14 | 99.14
Avg. 74.80 95.45 | 96.40 | 97.34 | 97.53

4.3 Results and Discussion

The performance of our proposed approach is evalu-
ated under different environmental conditions using
Matlab implementation. The experiments setup is
similar to the one adopted by the authors of CASIA
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B database (Yu et al., 2006). The galley set of nor-
mal walking of all subjects is always used to train
the SVM model. Three sets under different covari-
ates are used as the probe sets as follows: normal
walking, carrying bag, and wearing coat. Sequences
of subjects under normal walking were chosen to be
the gallery set as proposed by the authors of CASIA
B dataset. Probe sets are taken in three different co-
variates: walking normally, carrying bag, and wearing
coat.

First, the proposed approach was applied on the
GEI without any partitioning. Then, FLBP is applied
and compared with LBP. All comparisons were con-
ducted in terms of recognition rates (accuracy), preci-
sion, recall and F-measure. As shown in Tables 1, 2,
and 3, FLBP-based features have better accuracy for
each covariate.

To evaluate the effect of partitioning on the recog-
nition rate, a group of experiments is designed. The
results are shown in Tables 4, 5, and 6 for three dif-
ferent scenarios. These results demonstrate that using
the holistic image has lower performance. Moreover,
it is clear that more partitions lead to enhanced results.
However, it is not a guarantee that with this number
of partitions we can always get the best performance
in all cases.

S5 CONCLUSIONS

In this paper, a fuzzy version of LBP was investi-
gated and applied for gait recognition. The GEIs im-
ages of CASIA B dataset were partitioned into non-
overlapping regions. Then, we investigated FLBP op-
erator to extract more local discriminative gait fea-
tures. The experimental results showed that the pro-
posed framework is outperforming LBP. Moreover,
the results demonstrated that using partitioning can
enhance the performance to promising levels. Future
work can include the investigation of FLBP on other
gait datasets and representations.

Table 5: Comparison of recognition rates under Carrying-
Bag with different non-overlapping partitioning.

o Number of Regions

AngleC') orie T3 7 8 10

0 40.85 625 | 69.4 | 7285 | 73.71
18 43.54 48.71 | 52.16 | 60.78 | 58.19
36 3691 444 | 49.14 | 48.71 | 50.43
54 33.62 33.19 | 35.35 | 43.54 | 40.95
72 36.72 31.9 3491 | 35.35 | 35.78
90 40.1 36.21 | 42.24 | 34.05 | 35.35
108 38.9 32.76 | 38.79 | 25.86 | 30.17
126 31.16 35.35 | 36.64 | 36.64 | 37.08
144 30.16 40.52 | 48.71 | 41.38 | 45.26
162 40.55 59.91 | 63.36 | 65.09 | 63.79
180 37.35 62.07 | 66.81 | 65.95 | 68.97
Avg. 37.26 4432 | 48.86 | 48.2 | 49.06
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Table 6: Comparison of recognition rates under Wearing-
Coat with different non-overlapping partitioning.

o Number of Regions
Angle®) oiie 5 [7 |8 10
0 11.33 19.83 | 23.71 | 3491 | 33.62
18 16.5 27.16 | 31.47 | 35.78 | 34.48
36 17.62 22.41 | 26.72 | 36.64 | 33.19
54 20.64 25.86 | 31.04 | 40.52 | 43
72 20.36 2845 | 31.9 | 3491 | 34
90 21.07 28.88 | 33.62 | 41.38 | 41.81
108 16.5 29.31 | 37.93 | 36.21 | 38.36
126 18.52 2241 | 27.16 | 375 | 3535
144 14.81 25.43 | 27.16 | 37.07 | 36.64
162 13.91 33.62 | 3448 | 37.5 37.93
180 13.9 31.04 | 38.79 | 39.22 | 39.22
Avg. 16.83 26.76 | 31.27 | 37.42 | 37.05
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