
A Cuckoo Search Clustering Algorithm for Design Structure Matrix

Hayam G. Wahdan, Sally S. Kassem and Hisham M. Abdelsalam
Faculty of Computers and Information, Cairo University, Cairo, Egypt

Keywords: Design Structure Matrix, Cuckoo Search, Modularity, Modular Design, Clustering, Optimization.

Abstract: Modularity is a concept that is applied to manage complex systems by breaking them down into a set of
modules that are interdependent within and independent across the modules. Benefits of modularity are
often achieved from module independence that allows for independent development to reduce overall lead
time and to reach economies of scale due to sharing similar modules across products in a product family.
The main objective of this paper is to support design products under modularity, cluster products into a set
of modules or clusters, with maximum internal relationships within a given module and minimum external
relationships with other modules. The product to be designed is represented in the form of a Design
Structure Matrix (DSM) that contains a list of all product components and the corresponding information
exchange and dependency patterns among these components. In this research Cuckoo Search (CS)
optimization algorithm is used to find the optimal number of clusters and the optimal assignment of each
component to specific cluster in order to minimize the total coordination cost. Results obtained showed an
improved performance compared to published studies.

1 INTRODUCTION

System design involves clustering various
components in a product such that the resulting
modules are effective for the company. An ideal
architecture is one that partitions the product into
practical and useful modules. Some successfully
designed modules can be easily updated on regular
time cycles, some can be made in multiple levels to
offer wide market variety, some can be easily
removed as they stay, and some can be easily
swapped to gain added functionality. The
importance of effective product modularity is
multiplied when identical modules are used in
various different products (Aguwa et al., 2012).

Modular design approach is widely used in
consumer products; machinery and software design.
In response to the changing market trend of having
large varieties within small production, modular
design has assumed significant roles in the product
development process (Gwangwava et al., 2013). The
product is represented in the form of a Design
Structure Matrix (DSM) that contains a list of all
product components and the corresponding
information exchange and dependency patterns.
DSM, working as a product representation tool,

provides a clear visualization of product design. The
transformation of Component-DSM into proposed
functional blocks of components is called
Clustering. For small problems' components, a
Component- DSM may be sorted manually. For
larger problems, this is not practical, and at some
point, computer algorithms are absolutely necessary
(Borjesson and Hölttä, 2012).

The aim of this paper is to develop a cuckoo
search (CS) optimization algorithm to find: (1) the
optimal number of clusters in a DSM; and (2) the
optimal assignment of components to each cluster.
The objective function is to minimize the total
coordination cost. In this context, the DSM will
work as a system analysis tool that provides a
compact and clear representation of a complex
system. It captures the
interactions/interdependencies/interfaces between
system elements. It also works as a project
management tool which renders a project
representation that allows for feedback and cyclic
activity dependencies (Abdelsalam et al., 2014).

The following sections of the paper are
structured as follows. Section 2 provides a brief
introduction on DSM. Section 3 reviews the
literature and introduces the previous work this

36
Wahdan, H., Kassem, S. and Abdelsalam, H.
A Cuckoo Search Clustering Algorithm for Design Structure Matrix.
DOI: 10.5220/0005693000360043
In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems (ICORES 2016), pages 36-43
ISBN: 978-989-758-171-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

research builds on. Section 4 provides the problem
definition. Section 5 presents the proposed
algorithm. Section 6 discusses the results obtained
and, finally, Section 7 provides conclusion and ideas
for future research.

2 DESIGN STRUCTURE MATRIX

The design structure matrix (DSM) is becoming a
popular representation and analysis tool for system
modelling, A DSM displays the relationships
between components of a system or product in a
compact visualization. Such a system can be, for
example, product architecture or an engineering
design process or a project.

The basic DSM is a simple square matrix, where
n is the number of system elements. The DSM has m
non-empty elements, where m is the number of
couplings among different system elements. An
example of a DSM is shown in Figure 1. Element
names are placed on the left hand side of the matrix
as row headings and across the top row as column
headings in the same order of their execution. A
common DSM assumption is that elements are
undertaken in the order listed from top to bottom.
An off-diagonal mark (x) represents dependency
between two elements. If an element i depends on
element j, then the matrix element i j (rowi , columnj)
contains an off diagonal mark (x), otherwise the cell
is empty (Abdelsalam and Bao, 2006).

Once the DSM for a product is constructed, it
can be analyzed for identifying modules, a process
referred to as clustering. The goal of DSM clustering
is to find a clustering arrangement where modules
minimally interact with each other while
components within a module maximally interact
with each other. As an example, consider the DSM
shown in Figure 1(a). One can see from Figure 1(b)
that the DSM is rearranged by permuting rows and
columns to contain most of the interactions within
two separate modules: {A, F, E} and {D, B, C, G}.
However, three interactions are left out of any
modules.

Figure 1: Design Structure Matrix.

3 RELATED WORK

The idea of maximizing interactions within modules
and minimizing interactions between modules within
a DSM was proposed by (Eppinger et al., 1994). A
stochastic clustering algorithm using this principle
operating on a DSM was first found in (Idicula,
1995), with subsequent improvements presented by
(Gutierrez, 1998). The proposed algorithm can find
clustering solutions to architecture and organization
interaction problems modelled using DSM method.
Gutierrez, (1998) developed a mathematical model
to minimize the coordination cost to find the optimal
solution for a given number of clusters. A Simulated
annealing algorithm was performed by (Thebeau,
2001) to find clustered DSM with cost minimization
as an objective.

Yassine et al. (2007) used the design structure
matrix (DSM) to visualize the product architecture
and to develop the basic building blocks required for
the identification of product modules. The clustering
method was based on the minimum description
length (MDL) principle and a simple genetic
algorithm (GA).

Borjesson (2009) proposed a method for
promoting better output from the clustering
algorithm used in the conceptual module generation
phase by adding convergence properties, a collective
reference to data identified as option properties,
geometrical information, flow heuristics, and
module driver compatibility.

Van Beek et al. (2010) developed a
modularization scheme based on the functional
model of a system. The k-means clustering was
adopted for DSM based modularization by defining
a proper entity representation, a relation measure
and an objective function. A novel clustering
method utilizing Neural Network algorithms and
Design Structure Matrices (DSMs) was introduced
by (Pandremenos and Chryssolouris, 2012). The
algorithm aimed to cluster components in DSM with
predetermined number of clusters and clustering
efficiency as an objective function.

Borjesson and Hölttä (2012) used IGTA (Idicula-
Gutierrez-Thebeau Algorithm) for clustering
Component-DSM as the basis for their work. They
provided some improvement named IGTA-plus.
IGTA-plus represented a significant improvement in
speed and quality of the solution obtained.

Borjesson and Sellgren (2013) presented an
efficient and effective Genetic clustering algorithm,
with the Minimum Description Length measure. To
significantly reduce the time required for the
algorithm to find a good clustering result, a

A Cuckoo Search Clustering Algorithm for Design Structure Matrix

37

knowledge aware heuristic element is included in the
GA process. The efficiency and effectiveness of the
algorithm is verified with four case studies.

Yang et al. (2014) provided a systematic
clustering method for organizational DSM. The
proposed clustering algorithm was able to evaluate
the clustering structure based on the interaction
strength.

Jung and Simpson (2014) introduced simple new
metrics that can be used as modularity indices
bounded between 0 and 1, and also utilized as the
objective functions to obtain the optimal DSM. The
optimum DSM was the one with the maximized
interactions within modules and the minimized
interactions between modules.

Kim et al. (2015) provided a new approach for
product design by integrating assembly and
disassembly sequence structure planning.

We conclude from all the above that there are
few techniques to cluster DSM for modularity which
differ mainly in the clustering objective. Cost
minimization is one of the first clustering objectives
in which each DSM element is placed in an
individual cluster and components are then,
coordinated across modules to minimize the cost of
being inside and outside a cluster. The maximum
number of components in a cluster is predetermined
to prevent forming large clusters. A clustered DSM
can be compared to a targeted DSM topology using
another objective function called Minimal
Description Length (MDL). MDL finds
mismatching elements between the two topologies.
The objective of clustering is to minimize MDL. The
number of clusters is determined a priori based on
the DSM structure. Clustering Efficiency (CE) index
is another clustering objective that evaluates a
weighed count of zero elements inside clusters and
non-zero elements outside clusters with a predefined
number of clusters.

In this research, a new optimization algorithm,
called the cuckoo search algorithm (CS) algorithm,
is introduced for solving the clustering problem of
DSM. To the best of our knowledge, this is the first
time CS is used to design products under modularity
with variable number of clusters, while prohibiting
overlapping between clusters.

4 PROBLEM DEFINITION

The problem presented in this work considers two
decision variables: (1) the number of clusters to be
formed and (2) the optimal assignment of elements
to each cluster. The objective function is to

minimize the total coordination cost. The total
coordination cost of the DSM to be clustered is
based on IntraClusterCost and ExtraClusterCost as
shown in equations 1 and 2, intraClusterCostൌ ሺClusterSize୬ୡ୪୳ୱ୲ୣ୰୨ୀଵ j୮୭୵ୡୡ ሺ	DSM୧୩୧,୩∈େ୪୳ୱ୲ୣ୰୨ DSM୩୧ሻሻ (1)

 ExtraClusterCost ൌ ሺDSM୧୩୧,୩	∉ୡ୪୳ୱ୲ୣ୰୨ DSM୩୧ሻDSMSize୮୭୵ୡୡ 		 ,j ൌ 1…ncluster (2)

where DSMik is the coupling between elements i
and k, DSMSize is the number of elements (rows) in
the matrix, powcc is the exponent used to penalize
the size of clusters, and ncluster is the total number
of clusters. clustersize is the number of elements in
cluster j (Borjesson and ltta, 2014).

Total coordination Cost = ExtraClusterCost +
IntraClusterCost

Subject to the constraint that each element is
assigned only to one cluster, in other words, overlap
between clusters is not allowed. Prohibiting overlap,
or multi-cluster elements, is important for the
following reasons: when allowing elements to be
assigned in multiple clusters, the importance and
usefulness of the clustering algorithm will be
diminished or eliminated. If elements exist in more
than one cluster, this forces interactions between
these clusters on multi levels. We would like the
elements to be placed with other elements that are
very similar (Pandremenos and Chryssolouris,
2012).

Modularity affects both the profit and the
sustainability of the product. A modular product
contains modules that can be removed and replaced.
The manufacturer can develop new modules instead
of entirely new products. Therefore, customers
buying upgraded modules only dispose of a portion
of the product, thus reducing the total amount of
waste. Hence, a customer upgrading a module does
not have an entirely new product.

5 PROPOSED ALGORITHM

Yang and Deb (2009) proposed a new Meta heuristic
algorithm called cuckoo search (CS). They tried to
simulate the behaviour of cuckoos to examine the
solution space for optimization. The algorithm was

ICORES 2016 - 5th International Conference on Operations Research and Enterprise Systems

38

inspired by the obligate interspecific brood
parasitism of some cuckoo species that lay their eggs
in the nests of host birds of other species. The aim is
to escape the parental investment in raising their
offspring. This strategy is also useful to minimize
the risk of egg loss to other species, as the cuckoos
can distribute their eggs amongst a number of
different nests.

Of course, sometimes it happens that the host
birds discover the alien eggs in their nests. In such
case, the host bird takes different responsive actions
varying from throwing such eggs away, to simply
leaving the nest and building a new one elsewhere.
On the other hand, the brood parasites have their
own sophisticated characteristics to ensure that the
host birds will care for the nestlings of their
parasites. Examples of these characteristics are
shorter egg incubation periods, rapid nestling
growth, and egg coloration or pattern mimicking
their hosts (Li and Yin, 2015).

Many testing functions are used to prove the
effectiveness of the algorithm, for example,
Michaelwicz function, Rosenbrock’s function, etc.
They prove that the CS algorithm is efficient. When
comparing results with existing GA and PSO’s,
cuckoo search performs better (Yang and Deb,
2010). Another major advantage of CS when
compared to other metaheuristic algorithms, is its
simplicity since it requires only two parameters.
This feature reduces the effort of adjustment and
fine tuning of parameter settings.

In cuckoo search, each egg can be regarded as a
solution. In the initial process, each solution is
generated randomly. When generating the ith
solution in t + 1 generation, denoted by Xi

t+1 a levy
flight is performed as shown in equation 3,

Xi
t+1 = Xi

t + α ⨁ Levy(λ) (3)
Where α > 0 is a real number denoting the step size,
which is related to the sizes of the problem of
interest, and the		⨁ product denotes entry-wise
multiplications. A Levy flight is a random walk
where the step-lengths are distributed according to a
heavy-tailed probability distribution as shown in
equation 4.

Levy ∼ u = t −λ, (1 < λ ≤ 3) (4)
The CS algorithm is based on three idealized

rules (Navimipour and Milani, 2015).
(1) Each cuckoo lays one egg at a time and

dumps it in a randomly chosen nest.
(2) The best nests with high quality eggs

(solutions) will be carried over to the next
generations.

(3) The number of available host nests is fixed,

and a host can discover an alien egg with a
probability [1 ,0] ∋ ܽ. In this case, the host bird
can either throw the egg away or abandon the nest to
build a completely new nest in a new location.

For simplicity, the third assumption can be
approximated by a fraction ܽ of the ݊ nests being
replaced by new nests (with new random solutions at
new locations). For a maximization problem, the
quality or fitness of a solution could be proportional
to the objective function. However, other more
sophisticated expressions for the fitness function can
also be defined.

Based on these three rules, the basic steps of the
CS algorithm are summarized in the pseudo code in
Figure 2.

Objective function f(x), x = (x1, ..., xd)T ;

Initial population of n host nests xi (i = 1, 2, ..., n);

while (t <MaxGeneration) or (stop criterion);

Get a cuckoo (i) randomly using Levy flights;

Evaluate its quality/fitness Fi;

Choose a nest among n (j) randomly;

if (Fi > Fj),

Replace j with the new solution;

end

Abandon a fraction (pa) of worse nests

and build new ones at new locations via Levy flights;

Keep the best solutions (or nests with quality solutions);

Rank the solutions and find the current best;

end while

Postprocess results and visualisation;

Figure 2: pseudo code of CS (Yildiz, 2013).

5.1 Solution Representation

The CS algorithm will be used to solve the problem
defined in Section 4. Solution representation of the
problem is a vector of size equals to the number of
elements in the DSM. Each cell in the vector takes
an integer value between 1 and the number of
clusters, as show in Figure 3. The vector in Figure 3
with size 7 represents a solution, where the DSM
Contains 7 elements. Elements 1 and 7 belong to
cluster 1, elements 2, 3, 4 belong to cluster 2, and
elements 5, 6 belong to cluster 3. This solution
representation forces the element to be a member of
only one cluster.

13 3 2 2 2 1

Figure 3: Solution representation vector.

A Cuckoo Search Clustering Algorithm for Design Structure Matrix

39

Assume that we start with the maximum possible
number of clusters, which equals to the number of
elements in the DSM. The next step is to try to find
the optimal number of clusters after deleting empty
clusters. Such representation of the problem will not
allow multi-clustering, which means each element
will be assigned to only one cluster.

This problem will be solved using Cuckoo search
algorithm (CS). CS solves continuous types of
variables. Since the problem in hand is categorized
as a discrete variable problem, the solutions should
be converted from continuous to discrete. This is
done by the discretization of the continuous space by
transforming the values into a limited number of
possible states. There are several discretization
methods available in the literature, for example:
random key technique is used to transform from
continues space to discrete integer space, to decode
the position, the nodes are visited in ascending order
for each dimension (Chen et al., 2011). The smallest
position value (SPV) method maps the positions of
the solution vector by placing the index of the lowest
valued component as the first item on a permutated
solution, the next lowest as the second, and so on
(Verma and Kumar, 2012). The nearest integer
method is another technique, to transform
continuous variables to integer variables. In the
nearest integer method, a real value is converted to
the nearest integer (NI) by rounding or truncating up
or down (Burnwal and Deb, 2012).

Considering the above mentioned methods, SPV,
and random key methods, are not suitable for the
problem presented in this work. This is because
integer value(s) need to be repeated, while these
methods result in unique values. Therefore, the
suitable method for the problem in hand is the
nearest integer method since it allows the repetition
of values by truncating to the higher or lower value.

In CS, we start with a set of nests; each nest is a
vector of length that equals to the number of
elements in the DSM. This vector contains random
numbers following uniform distribution in the range
from lower and upper limits, these random numbers
are converted to integer values using the nearest
integer method. Each one of these integer numbers
represent a solution that could be sent for the
evaluation function. The evaluation function returns
the total coordination cost.

5.2 Solution Evaluation

The total coordination cost of the DSM to be
clustered is based on IntraClusterCost and
ExtraClusterCost as explained in section 4.

Regarding intracluster cost, if interaction DSMik
belongs to cluster j, then calculate intra cluster cost.
On the other hand, if interaction DSMik does not
belong to cluster j, calculate the extra cluster cost.
The first step in calculating the total coordination
cost is to start with the total number of interactions
in the DSM multiplied by the size of the DSM raised
to the power powcc. This is the highest value of total
coordination. This value will be minimized in
subsequent steps of the algorithm after forming
clusters. After completion of the evaluation step,
select the best solution and go to the next best
solution using Levy flight carrying the best nests
with high quality of eggs (solutions) over to the next
generations. Continue till the stopping condition is
reached.

6 EXPERIMENTAL RESULTS
AND ANALYSIS

In this section we examine the CS algorithm on
different problems. We use 2 small size and 1 large
size problem. The first small size problem has a
DSM that contains 7 elements as shown in figure
4.The DSM starts initially with a total coordination
cost of 68. This cost is based on assigning each
element in it is own cluster. No clusters are formed
yet, and powcc=0.65.

Figure 4: Original DSM.

After applying the CS clustering algorithm, the
clustered DSM is as shown in Figure 5. The Total
coordination cost is reduced to 48. Thebeau (2001)
solved the same problem and obtained a total
coordination cost of 53, hence, our proposed CS is
able to obtain better results. The minimum number
of clusters using the proposed CS algorithm is 2.
Figure 6 shows the total cost as it changes with
every iteration. The best solution is obtained in
iteration number 575. The CPU run time ranges

ICORES 2016 - 5th International Conference on Operations Research and Enterprise Systems

40

from 0.07 seconds to 0.39 seconds for 100 to 1000
iterations, respectively.

It is noticed that, in the clustered DSM two
clusters are formed and most interactions are
included in clusters. This means that, similar
elements are grouped in the same cluster. In this
case intracost is larger than the extracost which
improves the objective function value. Only 3
interactions are placed outside clusters (number of
1's).

Figure 5: Clustered DSM.

Figure 6: Cost history for CS algorithm-best solution.

We examined the developed algorithm on
another problem presented in (Yassine et al., 2007).
The DSM of the problem has 9 elements as shown in
Figure 7.

Figure 8 shows the clustered DSM after using CS
algorithm. The total coordination cost after
clustering with CS is 41.8. The corresponding
number of clusters is 4. The resulting DSM clustered
using our proposed CS algorithm is the same as the
one obtained in (Yassine et al., 2007). Figure 9
shows the total cost as it changes with every
iteration. The best solution is obtained in iteration
number 880. The CPU run time ranges from 1.07

seconds to 7.52 seconds for 100 to 1000 iterations,
respectively.

 A B C D E F G H I

A 1 0 0 0 1 0 1 0 0

B 0 1 1 0 0 1 0 1 0

C 0 1 1 0 0 1 0 1 0

D 0 0 0 1 0 0 0 0 0

E 1 0 0 0 1 0 1 0 0

F 0 1 1 0 0 1 0 1 0

G 1 0 0 0 1 0 1 0 0

H 0 1 1 0 0 1 0 1 0

I 0 0 0 0 0 0 0 0 1

Figure 7: Original DSM.

We notice from Figure 8 that, in the clustered
DSM four clusters are formed, cluster 1 with the
most similar 3 elements , cluster 2 with the most
similar 4 elements, cluster 3 with 1 element and
cluster 4 with 1 element. All interactions are
included in clusters. In this case, there are no extra
costs because no 1's are outside clusters.

Figure 8: Clustered DSM.

Figure 9: Cost history for CS algorithm-best solution.

100 200 300 400 500 600 700 800 900 1000
40

42

44

46

48

50

52

54

56

58

60

Number of iterations

To
ta

l C
os

t

100 200 300 400 500 600 700 800 900 1000
40

42

44

46

48

50

52

54

56

58

Number of Iterations

To
ta

l C
os

t

A Cuckoo Search Clustering Algorithm for Design Structure Matrix

41

To further evaluate the proposed CS algorithm
we apply it on a large size problem, available in
(Thebeau, 2001) . The DSM contains 61 elements
and represents an elevator example. The total
coordination cost obtained using the CS algorithm is
4133.25, with a total number of 17 clusters. The
total coordination cost obtained in (Thebeau, 2001)
is 4433. Accordingly, our proposed CS algorithm is
able to obtain superior results when compared to the
results obtained by (Thebeau, 2001). Cluster
assignments of the elevator example using the CS
algorithm are shown in Table 1. The best solution is
obtained in iteration number 680. The CPU run time
5461.7 seconds after 1000 iterations.

Figure 10 shows the total cost as it changes with
every iteration.

Table 1: results obtained using CS algorithm for the
elevator example.

Cluster
Number

Elements that cluster contains

1 1,3,5,11,15,17,18,20,22,28,34,35,37,3
9,40,41,43,47,48,50,59,60,61

2 2,8,12,16,19,21,26,27,32,33,44,46,49,
54

3 4
4 6,9,13
5 7
6 10,14,25,55
7 20
8 22,53
9 23,31

10 24
11 30
12 36
13 51
14 52
15 56
16 57
17 58

Figure 10: Cost history for CS algorithm–best solution.

7 CONCLUSION AND FUTURE
WORK

The design of products under modularity is a
problem that captured the attention of many
researchers. One method to perform modular
product design is through representation and
clustering of a DSM. Clustering of a DSM in this
work requires solving for 2 decision variables: the
number of clusters to form, and the assignment of
elements to each cluster. The objective function is to
minimize the total coordination cost, subject to one
constraint, namely, assigning each element to one
cluster and prohibiting clusters' overlap. To perform
the clustering of DSM we employed cuckoo search
(CS) algorithm. The CS algorithm has proved its
efficiency in solving many problems in terms of
simplicity, speed, and solution quality. We applied
the CS algorithm on a number of DSM test problems
available in the literature. Results show that the
proposed CS obtained superior or similar results to
those available in the literature. Future work
includes developing a model that restricts the
number of elements within each cluster,
incorporating sustainability concepts, and consider
the number of clusters as part of the objective
function.

REFERENCES

Abdelsalam, H. M., Rasmy, M. H., & Mohamed, H. G.
(2014). A Simulation-Based Time Reduction
Approach for Resource Constrained Design Structure
Matrix. International Journal of Modeling and
Optimization , 4 (1), 51-55.

Abdelsalam, H., & Bao, H. (2006). A Simulation-based
Optimization Framework for Product Development
Cycle Time Reduction. IEEE Transactions on
Engineering Management , 53 (1), 69-85.

Aguwa, C. C., Monplaisir, L., & Sylajakumar, P. A.
(2012). Effect of Rating Modification on a Fuzzy-
Based Modular Architecture for Medical Device
Design and Development. Advances in Fuzzy Systems .

Borjesson, F., & Hölttä-Otto, K. (2012). Improved
clustering algolrithm for design structure matrix.
ASME 2012 International Design Engineering
Technical Conferences & Computers and Information
in Engineering Conference (pp. 1-10). Chicago, IL,
USA: IDETC/CIE 2012.

Borjesson, F., & ltta-Otto, K. H. (2014). A module
generation algorithm for product architecture based on
component interactions and strategic drivers. Research
in Engineering Design , 25 (1), 31-51.

Borjesson, F., & Sellgren, U. (2013). Fast Hybrid Genetic
Clustering Algorithm for Design Structure Matrix.

100 200 300 400 500 600 700 800 900 1000
4100

4200

4300

4400

4500

4600

4700

Number of iterations

To
ta

l C
os

t

ICORES 2016 - 5th International Conference on Operations Research and Enterprise Systems

42

25th International Conference on Design Theory and
Methodology. Portland, Oregon, USA: ASME 2013.

Borjesson, F. (2009). Improved output in modular function
deployment using heuristics. International conferance
on engineering design, (pp. 24-27). Stanford,USA.

Burnwal, S., & Deb, S. (2012). Scheduling optimization of
flexible manufacturing system using cuckoo search-
based approach. The International Journal of
Advanced Manufacturing Technology, 64, 1-9.

Chen, H., Li, S., & Tang, Z. (2011). Hybrid gravitational
search algorithm with random-key encoding scheme
combined with simulated annealing. International
Journal of Computer Science and Mobile Computing,
11 (6), 208-217.

Eppinger, S., Whitney, D., Smith, R., & Gebala, D.
(1994). A model based method for organizing tasks in
product development. Research in Engineering Design
, 1–13.

Gutierrez, C. I. (1998). Integration analysis of product
architecture to support effective team co-location.
Cambridge: Masters thesis, Massachusetts Institute of
Technology.

Gwangwava, N., Nyadongo, S., Mathe, C., & Mpof, K.
(2013). Modular Clusterization Product Design
Support System. International Journal of Advances in
Computer Science and Technology (IJACST) , 2 (11),
8-13.

Idicula, J. (1995). Planning for concurrent engineering.
Singapore: Gintic Institute Research .

Jung, S., & Simpson, T. W. (2014). A Clustering Method
Using New Modularity Indices and Genetic Algorithm
with Extended Chromosomes. DSM 14 Proceedings of
the 16th International DSM conference: Risk and
Change management in complex systems, (pp. 167-
176).

Kim, S., Baek, J. W., Moon, S. K., & Jeon, S. M. (2015).
A New Approach for Product Design by Integrating
Assembly and Disassembly Sequence Structure
Planning. 247-257.

Li, X., & Yin, M. (2015). Modified cuckoo search
algorithm with self adaptive parameter method.
Information Sciences , 298, 80–97.

Navimipour, N. J., & Milani, F. S. (2015). Task
Scheduling in the Cloud Computing Based on the
Cuckoo Search Algorithm. International Journal of
Modeling and Optimization , 5 (1), 44-47.

Pandremenos, J., & Chryssolouris, G. (2012). A neural
network approach for the development of modular
product architectures. International Journal of
Computer Integrated Manufacturing, 1-8.

Thebeau, R. (2001). Knowledge management of system
interfaces and interactions for product development
process. Massachusetts Institute of Technology.

van Beek, T. J., Erden, M. S., & Tomiyama, T. (2010).
Modular design of mechatronic systems with function
modeling. Mechatronics , 20 (8), 850–863.

Verma, R., & Kumar, S. (2012). DNA sequence assembly
using continuous particle swarm optimization with
smallest position value rule. First International

Conference on Recent Advances in Information
Technology, (pp. 410-415).

Yang, Q., Yao, T., Lu, T., & Zhang, B. (2014). An
Overlapping-Based Design Structure Matrix for
Measuring Interaction Strength and Clustering
Analysis in Product Development Project. IEEE
TRANSACTIONS ON ENGINEERING
MANAGEMENT , 61 (1), 159-170.

Yang, X., & Deb, S. (2009). Cuckoo search via Levy
flights. the World Congress on Nature and
Biologically Inspired Computing (NABIC ’09) (pp.
210–214). Coimbatore, India: IEEE.

Yang, X.-s., & Deb, S. (2010). Engineering Optimisation
by Cuckoo Search. International Journal of Math
Model Numerical Optimization, 1 (4), 330-343.

Yassine, A. A., Yu, T.-L., , & Goldberg, D. E. (2007). An
information theoretic method for developing modular
architectures using genetic algorithms. Research in
Engineering Design , 18, 91-109.

Yildiz, A. R. (2013). Cuckoo search algorithm for the
selection of optimal machining parameters in milling
operations. international Journal of Advanced
Manufacturing Technology , 64 (1), 55-61.

A Cuckoo Search Clustering Algorithm for Design Structure Matrix

43

