
Trust-based Dynamic RBAC

Tamir Lavi1 and Ehud Gudes1,2

1The Open University, Ra’anana, Israel
2Ben-Gurion University, Beer-Sheva, 84105, Israel

Keywords: Trust-Based Access Control, RBAC, Privacy-Preservation, Role Delegation.

Abstract: A prominent feature of almost every computerized system is the presence of an access control module. The
Role Based Access Control (RBAC) model is among the most popular in both academic research and in
practice, within actual implementation of many applications and computer infrastructures. The RBAC model
simplifies the way that a system administrator controls the assignment of permissions to individuals by as-
signing permissions to roles and roles to users. The growth in web applications which enable the access of
world-wide and unknown users, expose these applications to various attacks. This led few researchers to sug-
gest ways to incorporate trust within RBAC to achieve even better control over the assignment of users to
roles, and permissions within roles, based on the user trust level. In this work, we present a new trust-based
RBAC model which improves and refines the assignment of permissions to roles with awareness of the user
trust and reputation. After describing the basic model, called TDRBAC for Trust-based Dynamic RBAC, we
describe ways to deal with issues like privacy-preservation and delegation of roles with the consideration of
user’s trust.

1 INTRODUCTION

Managing access control in a computerized system
can be a simple task as long as there are a few users
or entities to control. However, with the growth of the
number of entities within a web based system, and the
exponential growth of the number of its users, there is
a need to find better ways to manage access to web ap-
plications. Several access control models have been
suggested over the years to simplify access control
management, one of those is the Role Based Access
Control(RBAC) model. RBAC is probably the most
common, widely accepted and most widespread both
in academic research and in actual implementation of
many web systems. RBAC allows the assignment of
users to roles and the assignment of roles to permis-
sions, as opposed to direct assignment of users to per-
missions. However as web applications become more
open (e.g. Google, Amazon, etc.) and their users are
spread world-wide and are often unknown in advance,
those web application get exposed to various attacks.
The basic RBAC model may not be sufficient and a
more refined model which assigns permissions also
based on Trust is needed. In this paper, we propose
such a new model called Trust-based Dynamic RBAC
(TDRBAC).

Previous studies of trust-based access control such

as Ray et. al (Chakraborty and Ray, 2006) change the
assignment of roles to users based on their trust level.
However, the permissions within a role remain the
same. We believe that such assignment is too coarse
and a more refined model is needed. For example two
physicians may be assigned to a role of Doctor but
their permissions may differ based on their trust level.
In this paper we propose such a refined model called
TDRBAC for Trust-based Dynamic RBAC. In TDR-
BAC, we incorporate traditional RBAC with aware-
ness to the user trust level in a way that maintains
the advantages of RBAC as a well-defined permis-
sion management model, and utilizing the trust level
of the system entities to control permission assign-
ment in a more refined granularly and a more dynamic
way. TDRBAC reduces the need to maintain and con-
trol user to role assignment over time, by allowing
flexibility and resilience to the changes in the user’s
trust level within the assignment of the roles to selec-
tive permissions. The model is designed to deny per-
missions from a user when her trust level decreases,
while granting more permissions when the trust level
increases.

To enhance TDRBAC usability we propose two
important extensions. The first extension provides
privacy, and the second one enables user rights del-
egation with trust awareness.

Lavi, T. and Gudes, E.
Trust-based Dynamic RBAC.
DOI: 10.5220/0005687503170324
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 317-324
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

317



The rest of the paper is organized as follows: In
the next section we provide the background and dis-
cuss related work. In Section 3 we define and explain
the basic model of TDRBAC and then we present a
comprehensive example that demonstrate the usage of
the proposed model. In Section 4 we discuss the ex-
tensions for privacy-preservation and user rights del-
egation. In Section 5 we conclude this work and dis-
cuss future work.

2 BACKGROUND AND RELATED
WORK

The RBAC model was defined in 1992 by Ferraiolo
et al (Ferraiolo and Kuhn, 1992), and later formal-
ized in (Sandhu et al., 1996) by Sandhu et al, as a dis-
cretionary access control approach that is more suit-
able to the secure processing needs of non-military
systems. RBAC was rapidly adopted both in practice
and in theory studies. RBAC offers an efficient man-
agement of user’s permissions, an effective enforce-
ment of need-to-know access control principles and
simplified auditing of user’s permissions for regula-
tory compliance. On the other hand, RBAC is often
considered outdated, expensive to implement and un-
able to accommodate real-time environmental states
as access control parameters. A recent survey con-
ducted by Fernandez et al (Condori-Fernández et al.,
2012) questioned RBAC assumptions and strengths,
and revealed some interesting findings. The survey
shows 48% of agreement among the respondents, that
changes affecting the assignment of users to roles, and
roles to permissions, happen frequently and may be-
come either an overwhelming task, or may lead to
violations of the need-to-know policies in enterprise
applications. We believe that within large-scale open
applications that phenomena could be even more dis-
ruptive (the survey did not include open applications).
Another dynamic change that RBAC itself is not suf-
ficient to handle, is the change in theuser’s trust
level over time, while it is expected that an access
control system should not disregard low user trust
when granting access to sensitive permissions. To
overcome the lack of flexibility of RBAC, new ac-
cess control models have been introduced, including
Attributes Based Access Control (ABAC) (Jin et al.,
2012b)(Coyne and Weil, 2013), ABAC/RBAC hybrid
approach such as (EmpowerID, 2013), (Rajpoot et al.,
2015) and RABAC (Jin et al., 2012a).

The idea of incorporating trust into an access
control model was discussed before by several re-
searchers. In ABAC type model, integrating trust can
be achieved simply by considering the user trust as

an attribute within the system (Smari et al., 2014).
RBAC on the other hand is a rigid model and by that
place a challenge for combining trust awareness. The
access control model suggested in (Deng and Zhou,
2012), offers a set of equations to compute the user
trust level in relation to a specific corresponding ob-
ject. Both the user nodes and resource nodes are
assigned a trust level using a trust evaluation algo-
rithm which makes the model quite far from the sim-
ple RBAC model. The TrustBAC model, described
in (Chakraborty and Ray, 2006), defines the required
trust level that the user must have in order to be as-
signed to a specific role. If the user does not meet the
required trust level of a specific role, the role assign-
ment is denied and another role is assigned to the user.
This may lead to a too simple model which may cause
proliferation of roles. Another more sophisticated
model was proposed by Chen and Crampton (Chen
and Crampton, 2011). Their model defines quanti-
tative factors on various components of the RBAC
model and also introduce the notion of ”Mitigation”
that allow a specific permission to be allowed under
specific requirement in case that the trust level of the
user does not meet the minimum risk threshold. The
model considers several mitigation strategies which
can be used to compute the risk level for using a per-
mission based on multiple paths between the user and
the permission. Again this deviates from the simple
RBAC structure and may impair the robust structure
of RBAC and interfere with the important RBAC fea-
ture of simplified user’s permission auditing.

TDRBAC on the other hand offers a way to in-
corporate users’s trust considerations while preserv-
ing the robust skeleton of RBAC as a role-centric ac-
cess control. It provides a compromise between the
too simple model of TrustBAC and the complex mod-
els of (Deng and Zhou, 2012) and (Chen and Cramp-
ton, 2011). In TDRBAC, as in RBAC, the permissions
explicitly define the modes of access and enable sim-
plified auditing (Kuhn et al., 2010).

3 THE TDRBAC MODEL

3.1 TDRBAC Elements

We rely on the common definition of the following:
user, role, operation, ob ject, permission, and in ad-
dition lets define:

Definition 1. Let userTrust be a real number in the
range of [0, 1] that represent a user expectation to
act in an honest manner as expected when 0 means
that the user is expected to abuse the system and 1

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

318



means that the user is fully trusted. userTrust is a
user property.
We denote: user.userTrust∈ [0,1].

Definition 2. Let permissionTrust be a real number
in the range of [0, 1] that represent the minimum level
of trust that a user must have in order to use the per-
mission, in a specific role to permission assignment
(see RPA definition below).
We denote: permissionTrust∈ [1,0].

3.2 Assignments

Definition 3. Let URA be user to role assignment. a
user can be assigned to many roles in many-to-many
relation.
We denote: URA⊆USERS×ROLES.

Table 1: URA assignment example.

USER ROLE
Mike Manager
Joe Guest
Lisa Admin

Definition 4. Let RPA be role to permission assign-
ment. A role can be assigned to many permissions in
a many-to-many relation. Each role to permission as-
signment has a trust level.
We denote: RPA⊆ ROLES×PERMISSION× [0,1].
The range [0,1] represent the RPA trust level which
represent the minimum trust level that the user must
have in order use this permission in this role.

Table 2: RPA Assignment Example.

ROLE PERMISSION Trust
Manager Can assign roles to users 0.9
Guest Read public posts 0
Admin Change system configurations1

3.3 How TDRBAC Works

When a user requests to perform some operation on a
system resource, the Authorization Center (AC) ver-
ifies that the user is assigned to a role with the cor-
responding permission. If the user is not assigned to
any role with a corresponding permission, the request
is rejected. If a corresponding permission was found,
the AC will consider theRPAtrust level: If theRPA
trust level is 0, then the request is granted and there is
no need to calculate the user trust. Otherwise, the AC
will calculate the user trust and allow the request only
if the user trust level is greater or equal to theRPA
trust level.

3.4 Dealing with Collisions

In some cases, users may be assigned to more than
one role in a specific session. For example, a sales
person can also be a board member and get assigned
to two different roles. The common approach to han-
dle multiple roles for each user is to restrict the user to
select specific role for each new session. For example,
the user must define whether she is acting as a ”board
member” or as a ”sales person” once the session is
created. That leads to a massive overhead on system
usage and while it’s expected on high sensitive sys-
tems, it could be very interfering in normal systems.
Therefore we believe that the model should handle a
multiple roles assignments in a specific session.

A collision is a situation when a specific permis-
sion is restricted from the user in one RPA when
the RPA.trustLevel is greater than theuserTrust
level, and it is granted by anotherRPA when the
RPA.trustLevelis lesser than theuserTrustlevel. In
a case of collision, the decision to grant or reject the
user’s request is based on a predefined security policy.
The Security Officer can decide to reject the permis-
sion if there is at least oneRPAwith a greater corre-
spondingRPA.trust than theuserTrust, or she can de-
cide to accept any permission request once there is at
least one RPA with a lesser correspondingRPA.trust
than theuserTrust.

The selected policy should be considered very
carefully. The simple-minded approach would be to
allow the permission if there is at least one corre-
spondingRPA that allows it, but later in this paper
we show that this approach may provoke a security
breach by allowing the user a subset of permissions
that the user could use to induce an attack or abuse
the system even with a low level of trust.

3.5 TDRBAC in Action (Detailed
Scenario)

In order to demonstrate TDRBAC usage we will show
an access control policy for a technical customer sup-
port system. To leverage the flexibility of TDRBAC
we want to have a small number of roles and let the
trust level to allow specific permission in the limits of
the role. In our system, we have only three roles:

• Customer

• Support agent

• Administrator

A customercan create issues (a case ticket) to de-
scribe a problem, a bug or request and close the ticket
once it is resolved. Once the user gain more trust we

Trust-based Dynamic RBAC

319



can assign more permission to the user, like adding
files to the issue.

An agent can be assigned to an issue, view and
instruct the customer to resolve it. As the agent gains
more trust, we can assign advanced capabilities like
control the customer desktop in order to resolve is-
sues.

An administratorcan change system properties
and configuration and manage users and roles. In our
system, the user ”root” is always assign to the admin-
istrator role and is always fully trusted.

Another capability that we have in our support
system is the ”Knowledge-Base”. The KB is a set of
articles with known bugs and issues that the agents
can use to share resolutions with each other. Once an
agent gets an issue for which he has no solution, he
can browse the KB to search for a solution. A trusted
customer can also get access to the KB, and trusted
agent can add or edit articles in the KB.

The complete set of permissions is as follows:

• A customer can:

– Create a new issue

– Add comments to own issues

– Add files (like logs, screenshots etc.)

– Close own issues

– Collaborate on issues of other users

– Browse the knowledge-base

– Can create more than one issue in 24 hours (to
avoid spam)

• An agent can:

– Take ownership on an issue

– View customer desktop

– Gain control on customer desktop and files sys-
tem

– Resolve an issue

– Add comments to issues

– Assign issues to other agents

– Add article to the knowledge-base

– Edit articles in the knowledge-base

– Delete article on the knowledge-base

– Gain control on customer desktop and files

• An administrator can:

– Change system configuration

– Register new users

– Manage users details

– Manage user’s roles

The next step is to assign a trust level to each per-
mission. The most basic capabilities, which any new
user must have, will be assigned to a trust level of
0. As the permission is more advanced, we assign a
higher trust. New users in our system starts with a
trust level of 0.

Table 3 list the final RPA of our system:

Table 3: RPA Assignment.

ROLE PERMISSION Trust
Customer Create a new issue 0

Add comments to own issues0
Close own issues 0
Browse the KB 0.25
Create more than 0.25
one issue in 24h
Add files to an issue 0.75
Collaborate on issues 1
of other users

Agent Resolve an issue 0
Add comments to issues 0
Add files to an issue 0.25
Add article to the KB 0.25
Assign issues to other agents0.5
Edit articles in the KB 0.5
Take ownership on an issue 0.75
View customer desktop 0.75
Delete article on the KB 0.75
Control on customer 1
desktop/files

Admin Register new users 0.25
Manage users details 0.75
Change system configuration1
Manage user’s roles 1

As is shown in the example above, our model of
access control allows managing just a few number of
roles, and yet getting the flexibility and dynamic per-
mission assignment that by other access control mod-
els will most likely require more roles to manage such
as: basic customer and advanced customer or new
agent and veteran agent. Nevertheless, a user cannot
gain any permission that is not part of her roles.

Permissions that are essential for the role are set
with theRPAtrust of 0, that is to insure that users get
the minimum required permission for the role they are
assigned to. As the users gain more trust, they also
gain access to more sensitive or strong permissions.
The problem of assigning trust level to permissions is
dealt in more detail in Section 3.7.

3.6 CalculatinguserTrust

TDRBAC does not restrict, nor dictate, the way of
calculating the user trust level. Many models suggest

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

320



a way of calculating a user trust level based on the
user history, experience and recommendation, see for
example (Ray and Chakraborty, 2004). Yet, it is ex-
pected that trust level of a user would be calculated as
close as possible to runtime, each time that the user is
asking to use a permission. To improve performance
the trust calculation function can use cached data and
avoid re-calculation of user trust in each access oper-
ation. (For example, the user trust calculation can use
the same value for the next 5 minutes, assuming that
in 5 minutes there would be no major change in the
user trust level.) The system administrator must be
aware that a malicious user can exploit the time dif-
ference of user trust calculation to perform illegal ac-
tions before losing her permissions due to the loss of
trust. Note that the trust model may also take into ac-
count the number of times the user was denied access
to permissions. If this number is high it may indicates
an intrusion attempt by a low trust user.

A related issue is the issue of dynamic enforce-
ment. When the trust level decreases, one loses access
but what happens to the accesses already performed?
In a transaction system (like a Database transaction)
one may require that the entire transaction be per-
formed with a single trust level, if such a loss of
trust has happened, the entire transaction should be
aborted.

3.7 ComputingTrustof Role to
Permission Assignment

There are two key components in our model: One is
the calculation of the user trust level. Obviously, if the
user’s trust is not genuine, the complete model looses
it’s credibility. Yet, as previously explained, TDR-
BAC does not dictate the way of calculating the user
trust level. The second is the trust level that is cho-
sen for eachRole to PermissionAssignment (RPA).
Choosing high level of trust for each permission can
lead to a low usability while too low trust could lead
to an untrustworthy and vulnerable system. Proper
assignment ofRPAshould balance between usability
and security. To improve system usability, we should
consider to assign the lower trust level possible, hence
having the permissions accessible to as many users as
possible. On the other hand we must prevent low-
trusted users to perform dangerous or sensitive oper-
ations that can cause damage to the system.

The definition of the RPA can be done by the secu-
rity administrator based on accumulated expertise and
experience, however a more systematic methodology
is desired. Next we propose such methodology based
on information collected during system operation. In
order to formulate the process of permissions trust as-

signment we need to add the following definitions:

Definition 5. Let Incident be a scenario where a user
perform a set of operations that leads to a security
breach, as system shutdown, data loss or data manip-
ulation.

Definition 6. Let Damage(Incident) be a real num-
ber in the range of[0,1] that represents the projec-
tion of an Incident on the system, when0 means that
the incident does not effect the system, and1 means a
complete destruction or system breakdown. In a com-
mercial system, the Damage should be calculated by
the financial loss, and the cost to repair the damage.
The value of Damage should be normalized by the to-
tal cost that the organization can handle. In a non-
commercial system (such as military system) the value
of Damage reflect the damage of an incident based on
risk assessment.

In the process described below we use theDamage
as highly correlated with the required Trust level.

Definition 7. Let common(permission) be a real
number in the range of[0,1] that represent the usage
probability of a specific permission within the sys-
tem. A more commonly used permission should be
assigned to a lower value of trust as possible while
less common permission, with requirement for a high
level of trust would have a smaller effect on the over-
all system usability.

In practice Common may be learned from the sys-
tem logs.

Definition 8. Let PER(Incident) be a subset of per-
missions, that are needed by a user to cause an
Incident.

We Denote: Per(Incident)⊆ PERMISSIONS

With the above definitions we look for a procedure
that will assign an ”optimal” match of trust levels to
permissions. One may define the optimality criteria
in different ways, but in general, the trust of a permis-
sion shuld increase with the incident damage it was
involved with, and decreases with its commonality.
The tradeoff between these two factors is to be deter-
mined by the security administrator. While we have
not fully investigated the complexity of the algorithm
to solve this optimality problem, below we suggest a
simple and practical heuristic for the trust assignment.
The procedure is as follows:

1. Sort all Incidentsby the value of the damage in
descending order, such thatIncident with high
value of damage is ordered before anIncident
with a lower level of damage.

2. Sort all permissionsby the value ofcommonin
ascending order, such thatpermissionthat is less

Trust-based Dynamic RBAC

321



usable is ordered before a more commonly used
permission.

3. initialize all permissions to a minimal trust value
(as determined by the security administrator)

4. Seti = 0

5. For the subset of permissionsPER(Incidenti)
if the there is no permission with a trust level
of Damage(Incidenti) or higher, than assign trust
level ofDamage(Incidenti) to the first permission
in the subset of permission (in the ”common” or-
der).

6. adjusti in 1 and repeat step 5.

Note that the procedure above insures that each in-
cident will cause at least one permission, usually the
less common one, to acquire a high trust level, while
the rest may stay in their lower trust levels.

4 TDRBAC EXTENSIONS

In the following section we propose two important ex-
tensions for the basic TDRBAC model:

• TDRBAC-P - extension for privacy-preservation

• TDRBAC-D - extension for delegation.

4.1 TDRBAC-P Extension for
Privacy-preservation

Privacy-preservation issues are becoming more and
more important these days as social networks and
large open systems raise crucial questions regarding
the usage of the user’s private data. Here we describe
an extension to TDRBAC dealing with the privacy is-
sue.

To address the concerns of privacy-preservation in
TDRBAC we incorporate the broadly used notion of
Purpose as proposed in (Yang et al., 2007). We define
purpose as follows:

Definition 9. Let Purpose be a reason for data col-
lection and data access. The purpose is ”well-
defined”, that is to say that the purpose is unambigu-
ous in the model implementation. Purposes cannot
overlap or partially overlap.
Let PUR be the collection of purposes in the access
control policy.

We define Pi as a set of purposes: Pi=
{p1, p2, p3, . . .}|p∈ PUR

We extend the RPA assignment to include the al-
lowed purposes:

Definition 10. RPA⊆ ROLES× PERMISSIONS×
PUR× [0,1]

With each permission request, the system must
specify the purposes for which the permission is re-
quested. The permission request would be in the
form:
f (user, permission, purpose).
This definition enables the specification of differ-
ent trust levels for different purposes for the same
(role,permission) pair. An example for an RPA as-
signment including purposes is shown in table 4

In case the trust level is not sufficient for a specific
purpose, the request may be denied, or less private
data for a lower purpose may be returned. One useful
way of dealing with purposes in case of a of Read
access, is to allow two types of answers to a Read
request:

• Abstract Data - a modified version of the records
without any private data (such as: users identity,
medical details, students grades, etc.) Another
form of Abstract data may be a k-anonymizeddata
such as in (Bayardo and Agrawal, 2005).

• Detailed Data - The full detailed data as re-
quested by the user.

The way the AC behaves in this case is dependent
on the Privacy policy. If both the purpose and trust
level match, the access is permitted. If the purpose
match and the trust level is too low, the request may
be denied or the data used for a lower purpose may
be returned, if the trust level for the lower purpose is
sufficient.

Usage Example
A doctor is requesting read access to patient lab

tests. The request purpose can be one of:

• p1 - For research purposes (low purpose)

• p2 - To write a prescription (high purpose)

TheRPAfor lab results are as specified in table 5.
The returned results in case ofp1 is abstract data

(e.g - without the patient personal details). The re-
sults in case ofp2 would be complete lab results. If
the doctor has a trust level of 0.4 and she request the
”write prescription” purpose, the system may return
only abstract data (lower the purpose) or deny the re-
quest.

4.1.1 Purpose Enforcement

When implementing the approach of purpose, the sys-
tem must enforce the purpose notion to avoid manip-
ulation of the permission request (Colombo and Fer-
rari, 2014). To achieve purpose enforcement, the sys-
tem should identify the actual use of the permission
in the time of the request and substitute the purpose
within the permission request. In the above example,

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

322



Table 4: RPA Assignment with Purposes.

Role Permission Purposes Trust
Administrative Assistant Read contacts details Schedule meetings 0.5
Engineer Access previous studies and researchesResolve system flaws 0.5
CFO Access business plans Create budget plans 0.75

Table 5: RPA Assignment with Purposes.

Role Permission Purposes Trust
Doctor Read lab results Write 0.5
Doctor Read lab results prescription
Doctor Read lab results Research 0.3

when the doctor request permission to review lab re-
sults, the system should identify whether the doctor is
currently writing prescription to a patient and substi-
tute the purpose accordingly.

4.2 TDRBAC-D Extension for
Delegation

Delegation is the assignment of a role to a user. Nor-
mally, role assignments are performed by the secu-
rity officer or administrators (”Administrative Dele-
gation”). However, sometimes we want to allow one
user to delegate his own roles to another user (”User
Delegation”). Administrative delegations are usually
permanent, while user delegations are usually tempo-
rary. From now, we refer to ”delegation” as user del-
egation.

The ability to delegate user roles to other users is
very important in large-scale open systems. By letting
the users to delegate their own roles, with the proper
limitation and trust awareness, we simplify the man-
agement of the user roles, and avoid too many admin-
istrative changes. Examples for constraints which can
be used in roles delegation are given by Crampton et
al in (Crampton and Khambhammettu, 2008).

To enable delegation which is Trust dependent, we
extend the basic model of TDRBAC as follows:

4.2.1 Definitions

Definition 11. Let delegator be a user who perform
role delegation to another user.

Definition 12. Let delegatee be a user who receive
role delegation from another user

Definition 13. Let delegationThreshold be a real
number in the range [0, 1]. The number repre-
sents the minimum trust level that the user (the del-
egator) must have in order to perform delegation
of a specific role to another user. We assign a
delegationThreshold to any role that we allow users
to delegate. A role that is not allowed for delegation

does not have a delegationThreshold value. We de-
note: delegationThreshold∈ [0,1]

Definition 14. Let delegatedTrust be a calculated
value based on the user trust level and the delegator
trust. When the user request a permission based on
a delegated role, we use the delegatedTrust value
instead of the userTrust.
Formula:
delegatedTrust = Delegator.userTrust ×
Delegatee.usertTrust

Definition 15. Let TRA be a delegationThreshold
to role assignment. An assignment of a trust level
threshold for any role that is eligible for delegation. A
role is eligible for delegation only if the delegator as-
signed to the role and has a trust level that is greater
or equals to the delegated threshold of the specific
role. We denote: TRA⊆ role×delegationThreshold

Table 6 demonstrate TRA assignment

Table 6: TRA Assignment.

Role Delegation Threshold
Engineer 0.5
Director 0.8
Salesperson 0.6

Definition 16. Let DRA be delegated roles assign-
ment - A list of delegated roles performed by dele-
gators to delegatees. We denote: DRA⊆ USER×
ROLE×USER

Table 7 demonstrate DRA assignment

Table 7: DRA Assignment.

Delegator Role Delegatee
John Engineer Bob
Michael Director Lisa
Alice Salesperson Anna

4.2.2 Understanding TDRBAC-D

When a user requests a permission, the AC will first
runs the basic TDRBAC function. If a directuser
to role assignment does not allow the permission re-
quested, the AC will run the delegation permission
functions by listing the delegated roles assignment
where theuser is mentioned as Delegatee. Than the

Trust-based Dynamic RBAC

323



AC will verify that the assignment is valid. A valid
delegation must satisfy the following conditions:

1. The delegator is assigned to the role that is being
delegated.

2. The role is eligible for delegation.

3. The delegator trust level is greater or equal to the
delegationThreshold.

If the requested permission is listed in one of the valid
roles, than the permission is granted if the computed
delegatedTrustis greater or equals to theRPA trust
level.

5 CONCLUSIONS

The concept of Trust Aware role based access control
model was recognized in previous work. The chal-
lenge in this work was to preserve the strengths of the
well known RBAC model as a role-centric access con-
trol. The model presented here shows a middle way in
that it provides a refined enough level of trust aware-
ness based on permissions, yet it is simple, enables
simplified auditing and can be easily understood and
enforced. In addition to the basic model, two exten-
sions were presented, one for Privacy purposes, the
other for Delegation purposes.

In future work we like to investigate the RPA com-
putation problem we described in section 3.7 further
and evaluate it under various simulation conditions.
We also plan to combine the model extensions and
test the model in a real-life scenario of a large com-
pany.

REFERENCES

Bayardo, R. J. and Agrawal, R. (2005). Data privacy
through optimal k-anonymization. InData Engineer-
ing, 2005. ICDE 2005. Proceedings. 21st Interna-
tional Conference on, pages 217–228. IEEE.

Chakraborty, S. and Ray, I. (2006). Trustbac: integrating
trust relationships into the rbac model for access con-
trol in open systems. InProceedings of the eleventh
ACM symposium on Access control models and tech-
nologies, pages 49–58. ACM.

Chen, L. and Crampton, J. (2011). Risk-aware role-based
access control. InSecurity and Trust Management -
7th International Workshop, STM 2011, Copenhagen,
Denmark, June 27-28, 2011, Revised Selected Papers,
pages 140–156.

Colombo, P. and Ferrari, E. (2014). Enforcement of pur-
pose based access control within relational database
management systems.IEEE Trans. Knowl. Data Eng.,
26(11):2703–2716.

Condori-Fernández, N., Franqueira, V. N., and Wieringa,
R. (2012). Report on the survey of role-based access
control (rbac) in practice.

Coyne, E. and Weil, T. R. (2013). Abac and rbac: Scal-
able, flexible, and auditable access management.IT
Professional, 15(3):14–16.

Crampton, J. and Khambhammettu, H. (2008). Delegation
in role-based access control.Int. J. Inf. Sec., 7(2):123–
136.

Deng, W. and Zhou, Z. (2012). A flexible rbac model based
on trust in open system. InIntelligent Systems (GCIS),
2012 Third Global Congress on, pages 400–404.

EmpowerID, w. p. (2013). Best practices in enterprise au-
thorization: The rbac/abac hybrid approach.

Ferraiolo, D. and Kuhn, R. (1992). Role-based access con-
trol. In In 15th NIST-NCSC National Computer Secu-
rity Conference, pages 554–563.

Jin, X., Krishnan, R., and Sandhu, R. (2012a). A role-based
administration model for attributes. InProceedings of
the First International Workshop on Secure and Re-
silient Architectures and Systems, pages 7–12. ACM.

Jin, X., Krishnan, R., and Sandhu, R. S. (2012b). A
unified attribute-based access control model covering
dac, mac and rbac.DBSec, 12:41–55.

Kuhn, D. R., Coyne, E. J., and Weil, T. R. (2010). Adding
attributes to role-based access control.Computer,
43(6):79–81.

Rajpoot, Q. M., Jensen, C. D., and Krishnan, R. (2015).
Integrating attributes into role-based access control.
In Data and Applications Security and Privacy XXIX,
pages 242–249. Springer.

Ray, I. and Chakraborty, S. (2004). A vector model of
trust for developing trustworthy systems. InIn Eu-
ropean Symposium on Research in Computer Security
, Sophia Antipolis (France, pages 260–275. Springer-
Verlag.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. (1996). Role-based access control models.Com-
puter, 29(2):38–47.

Smari, W. W., Clemente, P., and Lalande, J. (2014). An
extended attribute based access control model with
trust and privacy: Application to a collaborative crisis
management system.Future Generation Comp. Syst.,
31:147–168.

Yang, N., Barringer, H., and Zhang, N. (2007). A purpose-
based access control model. InProceedings of the
Third International Symposium on Information Assur-
ance and Security, IAS 2007, August 29-31, 2007,
Manchester, United Kingdom, pages 143–148.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

324


