WebDPF: A Web-based Metamodelling and Model Transformation Environment

Fazle Rabbi, Yngve Lamo, Ingrid Chieh Yu, Lars Michael Kristensen


Metamodelling and model transformation play important roles in model-driven engineering as they can be used to define domain-specific modelling languages. During the modelling phase, modellers encode domain knowledge into models which may include both structural and behavioral aspects of a system. The contribution of this paper is a new web-based metamodelling and model transformation tool called WebDPF based on the Diagram Predicate Framework (DPF). WebDPF supports multilevel diagrammatic metamodelling and specification of model constraints, and it supports diagrammatic development and analysis of model transformation systems. We show how the support for model transformation systems in WebDPF can be exploited to (i) support auto-completion of partial models thereby enhancing modelling efficiency, and (ii) provide execution semantics for workflow models. Furthermore, we illustrate how WebDPF incorporates a scalable model navigation facility designed to enable users to inspect and query large models.


  1. (2006). Hypertension. Building Healthy Lifestyles. www.chinookprimarycarenetwork.ab.ca/ extranet/docs/guides/7.pdf.
  2. Anjorin, A., Lauder, M., Patzina, S., and Sch ürr, A. (2011). eMoflon: Leveraging EMF and Professional CASE Tools. In 3. Workshop Methodische Entwicklung von Modellierungswerkzeugen (MEMWe2011).
  3. Arendt, T., Biermann, E., Jurack, S., Krause, C., and Taentzer, G. (2010). Henshin: Advanced Concepts and Tools for In-place EMF Model Transformations. In Proceedings of the 13th International Conference on Model Driven Engineering Languages and Systems: Part I, MODELS'10, pages 121-135. SpringerVerlag, Berlin, Heidelberg.
  4. Atkinson, C., Gerbig, R., and Tunjic, C. (2013). Enhancing classic transformation languages to support multilevel modeling. Software & Systems Modeling, pages 1-22.
  5. Atkinson, C. and K ühne, T. (2001). The essence of multilevel metamodeling. In Proceedings of the 4th International Conference on The Unified Modeling Language, Modeling Languages, Concepts, and Tools, UML'01, pages 19-33. Springer-Verlag.
  6. Barr, M. and Wells, C., editors (1995). Category Theory for Computing Science, 2nd Ed. Prentice Hall International (UK) Ltd., Hertfordshire, UK.
  7. Becker, S. (2008). Coupled model transformations. In Proceedings of the 7th International Workshop on Software and Performance, WOSP 7808, pages 103-114.
  8. Diskin, Z. and Wolter, U. (2008). A diagrammatic logic for object-oriented visual modeling. Electronic Notes in Theoretical Computer Science, 203(6):19 - 41. Proceedings of the Second Workshop on Applied and Computational Category Theory (ACCAT 2007).
  9. Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006). Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. Springer.
  10. Kennel, B. (2012). A Unified Framework for Multi-Level Modeling. PhD thesis, University of Mannheim.
  11. Lamo, Y., Wang, X., Mantz, F., MacCaull, W., and Rutle, A. (2012). DPF Workbench: A diagrammatic multilayer domain specific (meta-)modelling environment. In Lee, R., editor, Computer and Information Science 2012, volume 429 of Studies in Computational Intelligence, pages 37-52. Springer.
  12. Levendovszky, T., Prange, U., and Ehrig, H. (2007). Termination criteria for dpo transformations with injective matches.
  13. Macedo, N., Tiago, J., and Cunha, A. (2015). A featurebased classification of model repair approaches. CoRR, abs/1504.03947.
  14. Mar óti, M., Kecskés, T., Kereskényi, R., Broll, B., V ölgyesi, P., Jurácz, L., Levendovszky, T., and Lédeczi, Í. (2014). Next generation (meta)modeling: Web- and cloud-based collaborative tool infrastructure. In Proceedings of the 8th Workshop on MultiParadigm Modeling, MPM@MODELS 2014, pages 41-60.
  15. Mazanek, S., Maier, S., and Minas, M. (2008). Autocompletion for diagram editors based on graph grammars. In Visual Languages and Human-Centric Computing, 2008. VL/HCC 2008. IEEE Symposium on, pages 242-245.
  16. Mens, T. and Van Der Straeten, R. (2007). Incremental resolution of model inconsistencies. In Recent Trends in Algebraic Development Techniques, volume 4409 of LNCS, pages 111-126. Springer.
  17. Rabbi, F., Lamo, Y., Yu, I., and Kristensen, L. (2015a). A diagrammatic approach to model completion. In Proceedings of the 4th Workshop on the Analysis of Model Transformations co-located with the 18th International Conference on Model Driven Engineering Languages and Systems (MODELS 2015), volume 1500 of CEUR Workshop Proceedings, pages 56-65. CEUR-WS.org.
  18. Rabbi, F., Lamo, Y., Yu, I. C., and Kristensen, L. M. (2015b). Towards a Multi Metamodelling Approach for Developing Distributed Healthcare Applications. . NIK: Norsk Informatikkonferanse, ISSN: 1892-0721.
  19. Rabbi, F. and MacCaull, W. (2014). User-Friendly UIs for the Execution of Clinical Practice Guidelines. In 2014 IEEE 27th International Symposium on ComputerBased Medical Systems, 2014, pages 489-490. IEEE Computer Society.
  20. Rutle, A. (2010). Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis, Department of Informatics, University of Bergen, Norway.
  21. Rutle, A., MacCaull, W., Wang, H., and Lamo, Y. (2012). A metamodelling approach to behavioural modelling. In Proceedings of the Fourth Workshop on Behaviour Modelling - Foundations and Applications, BM-FA 7812, pages 5:1-5:10. ACM.
  22. Schmidt, D. C. (2006). Guest editor's introduction: Modeldriven engineering. 39(2):25-31.
  23. Schulz, C., L öwe, M., and K önig, H. (2011). A categorical framework for the transformation of objectoriented systems: Models and data. J. Symb. Comput., 46(3):316-337.
  24. Sen, S., Baudry, B., and Precup, D. (2007). Partial model completion in model driven engineering using constraint logic programming. In INAP'07, Germany.
  25. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S. V., and Ergin, H. (2013). AToMPM: A webbased modeling environment. In Joint Proceedings of MODELS'13 Invited Talks, Demonstration Session, Poster Session, and ACM Student Research Competition, volume 1115, pages 21-25. CEUR-WS.org.
  26. Taentzer, G., Mantz, F., Arendt, T., and Lamo, Y. (2013). Customizable model migration schemes for metamodel evolutions with multiplicity changes. In 16th International Conference, MODELS 2013, volume 8107 of LNCS, pages 254-270. Springer.
  27. Tomassetti, F., Torchiano, M., Tiso, A., Ricca, F., and Reggio, G. (2012). Maturity of software modelling and model driven engineering: A survey in the italian industry. In 16th International Conference on Evaluation & Assessment in Software Engineering, EASE 2012, pages 91-100. IET - The Institute of Engineering and Technology / IEEE Xplore.
  28. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., and Heldal, R. (2013). Industrial adoption of modeldriven engineering: Are the tools really the problem? In 16th International Conference, MODELS 2013, volume 8107 of LNCS, pages 1-17. Springer.

Paper Citation

in Harvard Style

Rabbi F., Lamo Y., Yu I. and Kristensen L. (2016). WebDPF: A Web-based Metamodelling and Model Transformation Environment . In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD, ISBN 978-989-758-168-7, pages 87-98. DOI: 10.5220/0005686900870098

in Bibtex Style

author={Fazle Rabbi and Yngve Lamo and Ingrid Chieh Yu and Lars Michael Kristensen},
title={WebDPF: A Web-based Metamodelling and Model Transformation Environment},
booktitle={Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,},

in EndNote Style

JO - Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,
TI - WebDPF: A Web-based Metamodelling and Model Transformation Environment
SN - 978-989-758-168-7
AU - Rabbi F.
AU - Lamo Y.
AU - Yu I.
AU - Kristensen L.
PY - 2016
SP - 87
EP - 98
DO - 10.5220/0005686900870098