Simulating Complex Systems - Complex System Theories, Their Behavioural Characteristics and Their Simulation

Rabia Aziza, Amel Borgi, Hayfa Zgaya, Benjamin Guinhouya


Complexity science offers many theories such as chaos theory and coevolutionary theory. These theories illustrate a large set of real life systems and help decipher their nonlinear and unpredictable behaviours. Categorizing an observed Complex System among these theories depends on the aspect that we intend to study, and it can help better understand the phenomena that occur within the system. This article aims to give an overview on Complex Systems and their modelling. Therefore, we compare these theories based on their main behavioural characteristics, e.g. emergence, adaptability, and dynamism. Then we compare the methods used in the literature to model and simulate Complex Systems, and we propose and discuss simple guidelines to help understand one’s Complex System and choose the most adequate model to simulate it.


  1. Axelrod, R.M., 1997. The Complexity of Cooperation: Agent-based Models of Competition and Collaboration, Princeton University Press.
  2. Aziza, R. et al., 2014. A Multi-agent Simulation: The Case of Physical Activity and Childhood Obesity. In Distributed Computing and Artificial Intelligence, 11th International Conference SE - 42. Advances in Intelligent Systems and Computing. pp. 359-367.
  3. Bagdasaryan, A., 2011. Discrete dynamic simulation models and technique for complex control systems. Simulation Modelling Practice and Theory, 19(4), pp.1061-1087.
  4. Bolliger, J., Sprott, J.C. & Mladenoff, D.J., 2003. Selforganization and complexity in historical landscape patterns. Oikos, 100(3), pp.541-553.
  5. Bonabeau, E., 2002. Agent-based modeling: methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America, 99(3), pp.7280-7287.
  6. Breckling, B., 2002. Individual-based modelling: potentials and limitations. ScientificWorldJournal, 2, pp.1044- 1062.
  7. Brockhurst, M. a & Koskella, B., 2013. Experimental coevolution of species interactions. Trends in ecology & evolution, 28(6), pp.367-75.
  8. Carbonaro, B. & Giordano, C., 2005. A second step towards a stochastic mathematical description of human feelings. Mathematical and Computer Modelling, 41(4-5), pp.587-614.
  9. Chen, D., Wang, L. & Chen, J., 2012. Large-Scale Simulation: Models, Algorithms, and Applications, Taylor & Francis.
  10. Chen, S.H., Jakeman, A.J. & Norton, J.P., 2008. Artificial Intelligence techniques: An introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation, 78(2-3), pp.379-400.
  11. Christensen, K., Fogedby, H.C. & Jeldtoft Jensen, H., 1991. Dynamical and spatial aspects of sandpile cellular automata. Journal of Statistical Physics, 63(3-4), pp.653-684.
  12. Darwin, C.R., 1977. The origin of species: by means of natural selection, Modern Library.
  13. Doyle, M.J. & Marsh, L., 2013. Stigmergy 3.0: From ants to economies. Cognitive Systems Research, 21, pp.1-6.
  14. Elsner, W., Heinrich, T. & Schwardt, H., 2015. Dynamics, Complexity, Evolution, and Emergence-The Roles of Game Theory and Simulation Methods. In The Microeconomics of Complex Economies. Elsevier, pp. 277-304.
  15. Fraile, A. & García-Arenal, F., 2010. The coevolution of plants and viruses: resistance and pathogenicity. Advances in virus research, 76(10), pp.1-32.
  16. Frantz, T.L., 2012. Advancing complementary and alternative medicine through social network analysis and agent-based modeling. Forschende Komplementärmedizin (2006), 19(1), pp.36-41.
  17. Fusaroli, R., Raczaszek-Leonardi, J. & Tylén, K., 2013. Dialog as interpersonal synergy. New Ideas in Psychology, pp.1-11.
  18. Grassé, P.P., 1959. La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis et cubitermes sp. La theorie de la stigmergie: essai d'interpretation du comportement des termites constructeurs. Insectes Sociaux, 6, pp.41-81.
  19. Harris, L.A., Hogg, J.S. & Faeder, J.R., 2009. Compartmental rule-based modeling of biochemical systems. In Simulation Conference (WSC), Proceedings of the 2009 Winter. pp. 908-919.
  20. Huhns, M.N. & Singh, M.P., 1998. Readings in Agents, Morgan Kaufmann.
  21. Johnson, N.F., 2007. Two's company, three is complexity: a simple guide to the science of all sciences, Oxford: Oneworld.
  22. Kari, J., 2005. Theory of cellular automata: A survey. Theoretical Computer Science, 334(1-3), pp.3-33.
  23. Koch, A., 2015. Review: New Pathways in Microsimulation. J. Artificial Societies and Social Simulation, 18(3).
  24. Krichewsky, M., 2008. A propos de la conscience?: “réflexions d'un promeneur dans la colline” Maurice Krichewsky. Le Journal des Chercheurs, pp.1-12.
  25. Lam, L., 1998. Nonlinear Physics for Beginners: Fractals, Chaos, Solitons, Pattern Formation, Cellular Automata, Complex Systems, World Scientific.
  26. Laperriere, V., 2004. Modélisation multi-agents du changement de pratiques viticoles. Université Joseph Fourier, Grenoble, France.
  27. Lewis, T.G., 2013. Cognitive stigmergy: A study of emergence in small-group social networks. Cognitive Systems Research, 21, pp.7-21.
  28. Lichtenstein, B.B., 2014. Generative Emergence: A New Discipline of Organizational, Entrepreneurial, and Social Innovation, Oxford University Press.
  29. Lorenz, E.N., 1963. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2), pp.130-141.
  30. Mittal, S., 2013. Emergence in stigmergic and complex adaptive systems: A formal discrete event systems perspective. Cognitive Systems Research, 21, pp.22-39.
  31. Müller, J.P., 2013. Approches des systèmes complexes. Présentation de cours à l'Université Virtuelle Environnement & Développement durable, p.5,9.
  32. Negahban, A. & Yilmaz, L., 2014. Agent-based simulation applications in marketing research. Journal of Simulation, 8(2), pp.129-142.
  33. Nicolet, J.L., 2010. Risks and complexity, Harmattan Editions.
  34. Obaidat, M.S. & Papadimitriou, G.I., 2003. Applied System Simulation: Methodologies and Applications, Kluwer Academic Publishers.
  35. Qu, Z. et al., 2011. Multi-scale modeling in biology: how to bridge the gaps between scales? Progress in biophysics and molecular biology, 107(1), pp.21-31.
  36. de Rosnay, J., 1975. Le Macroscope: vers une vision globale, Seuil.
  37. Rouquier, J.P., 2008. Robustesse et emergence dans les systèmes complexes?: le modèle des automates cellulaires. University of Lyon.
  38. Sarmady, S., Haron, F. & Talib, A.Z., 2011. A cellular automata model for circular movements of pedestrians during Tawaf. Simulation Modelling Practice and Theory, 19(3), pp.969-985.
  39. Siebers, P.O. et al., 2010. Discrete-event simulation is dead , long live agent-based simulation?! Journal of Simulation, 4(3), pp.204-210.
  40. Snijders, T.A.B., van de Bunt, G.G. & Steglich, C.E.G., 2010. Introduction to stochastic actor-based models for network dynamics. Social Networks, 32(1), pp.44-60.
  41. Thiétart, R.A., 2000. Management et complexité?: Concepts et théories,
  42. Thomas, D.M. et al., 2014. Dynamic model predicting overweight, obesity, and extreme obesity prevalence trends. Obesity, 22(2), pp.590-597.
  43. Walby, S., 2007. Complexity Theory, Systems Theory, and Multiple Intersecting Social Inequalities. Philosophy of the Social Sciences, 37(4), pp.449-470.
  44. Wolf, T. De & Holvoet, T., 2005. Emergence Versus SelfOrganisation?: Different Concepts but Promising When Combined. In Lecture Notes in Computer Science - Engineering Self-Organising Systems. Springer Berlin Heidelberg, pp. 1-15.

Paper Citation

in Harvard Style

Aziza R., Borgi A., Zgaya H. and Guinhouya B. (2016). Simulating Complex Systems - Complex System Theories, Their Behavioural Characteristics and Their Simulation . In Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-172-4, pages 298-305. DOI: 10.5220/0005684602980305

in Bibtex Style

author={Rabia Aziza and Amel Borgi and Hayfa Zgaya and Benjamin Guinhouya},
title={Simulating Complex Systems - Complex System Theories, Their Behavioural Characteristics and Their Simulation},
booktitle={Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},

in EndNote Style

JO - Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Simulating Complex Systems - Complex System Theories, Their Behavioural Characteristics and Their Simulation
SN - 978-989-758-172-4
AU - Aziza R.
AU - Borgi A.
AU - Zgaya H.
AU - Guinhouya B.
PY - 2016
SP - 298
EP - 305
DO - 10.5220/0005684602980305