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Abstract: The Simeck family of lightweight block ciphers was proposed in CHES 2015 which combines the good
design components from NSA designed ciphers SIMON and SPECK. Dynamic key-guessing techniques were
proposed by Wanget al. to greatly reduce the key space guessed in differential cryptanalysis and work well
on SIMON. In this paper, we implement the dynamic key-guessing techniques in a program to automatically
give out the data in dynamic key-guessing procedure and thus simplify the security evaluation of SIMON and
Simeck like block ciphers regarding differential attacks. We use the differentials from Kölblet al.’s work and
also a differential with lower Hamming weight we find using Mixed Integer Linear Programming method to
attack Simeck. We improve the previous best results on all versions of Simeck by 2 rounds.

1 INTRODUCTION

SIMON and SPECK (Beaulieu et al., 2013) are two
lightweight block cipher families designed by NSA
that have attracted numerous cryptanalysis since their
publication in 2013 (Biryukov et al., 2014; Shi et al.,
2014; Abed et al., 2013; Alkhzaimi and Lauridsen,
2013; Alizadeh et al., 2013; Wang et al., 2014a;
Wang et al., 2014b; Sun et al., 2014c). SIMON is
optimized for hardware implementation and SPECK
is optimized for software. In CHES 2015, Yanget al.
combine their good components and get a new design
of block cipher family, called Simeck (Yang et al.,
2015). The Simeck family applies a slightly modified
version of SIMON’s round function and reuses it in
the key schedule like SPECK does. The hardware
implementations of Simeck block cipher family are
even smaller than that of SIMON in terms of area and
power consumption (Yang et al., 2015).

In 2014, a new differential attack applying dy-
namic key-guessing techniques was proposed to work
on the reduced SIMON family (Wang et al., 2014a).
The basic idea of the attack is to merge the classic
differential attack (Biham and Shamir, 1991) and
the modular differential attack which is widely used
to attack hash functions (Cannière and Rechberger,

∗corresponding author: Lei Hu

2006; Mendel et al., 2011; Leurent, 2013; Theobald,
1995; Wang et al., 2005). This technique is aimed at
block ciphers with bitwise AND operator. Based on
observations of differential propagation of the AND
operator, attackers can deduce values of some subkey
bits and thus greatly reduce the key space that need to
be guessed. With differentials with high probability
in previous papers (Biryukov et al., 2014; Abed
et al., 2013; Sun et al., 2014b), dynamic key-guessing
techniques were used to improve the best previous
cryptanalysis results by 2 to 4 rounds on family of
SIMON block ciphers (Wang et al., 2014a).

As dynamic key-guessing techniques were newly
proposed, the designers of Simeck did not consider
its security regarding this technique. The designers
of Simeck give some other security analysis results
including differential attacks (Biham and Shamir,
1991), linear attacks (Matsui, 1994), impossible dif-
ferential attacks (Biham et al., 1999),etc., mainly
following the attack procedure of SIMON due to
their similarity. Recently, cryptanalysis covering
more rounds are given (Bagheri, 2015; Kölbl and
Roy, 2015). Kölbl and Roy give differentials with
high probability of all three versions and launch
differential attacks covering 19, 26 and 33 rounds
of Simeck32/64, Simeck48/96 and Simeck64/128 re-
spectively (Kölbl and Roy, 2015). Though they
noticed the dynamic key-guessing method, they did
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not implement it.
In this paper, we reveal some details in imple-

menting the dynamic key-guessing techniques and
thus make it easy to launch a differential attack with
these techniques on SIMON and Simeck like block
ciphers. Specifically, we write a program to calculate
the complexity in dynamic key-guessing procedure
and then estimate the complexities in differential
cryptanalysis on family of Simeck block ciphers.
We find a 13-round differential of Simeck32/64 with
lower hamming weight with probability 2−29.64. Ap-
plying this differential and differentials from Kölblet
al.’s work (Kölbl and Roy, 2015) to attack Simeck
with dynamic key-guessing techniques, we improve
the best previous results on all versions of Simeck
block ciphers by 2 rounds. The comparison of the
cryptanalysis results for Simeck is in Table 1.

The organization of the paper is as follows. In
Section 2 we give a brief introduction of the Simeck
family block ciphers. In Section 3 we describe Wang
et al.’s dynamic key-guessing techniques in a general
way and provide some details in implementing the
techniques. In Section 4 we give a 13-round differ-
ential of Simeck32/64 found by Mixed Integer Linear
Programming (MILP) method and use it as well as
differentials in references to launch differential attack
with dynamic key-guessing techniques on Simeck.
We conclude the paper in Section 5.

2 THE SIMECK LIGHTWEIGHT
BLOCK CIPHER

2.1 Notations

In this paper, we use notations as follows.

Xr−1 input of ther-th round

Lr−1 left half of Xr−1

Rr−1 right half ofXr−1

Kr−1 subkey used inr-th round

Xi i-th bit of X, indexed from left to right

X ≫ r right rotation ofX by r bits

⊕ bitwise exclusive OR (XOR)

∧ bitwise AND

∆X X⊕X′, difference ofX andX′

+ addition operation

% modular operation

∪ union of sets

∩ intersection of sets

2.2 Description of Simeck

The family of Simeck lightweight block ciphers
was introduced in CHES 2015 (Yang et al.,
2015). It is a Feistel structure and is denoted
by Simeck2n/mn, where 2n is the block size and
mn the master key size. It includes three versions:
Simeck32/64, Simeck48/96 and Simeck64/128 with
number of roundsnr=32, 36 and 44 respectively.
The left half of input texts to thei-th round is
Li−1 = {Xi−1

n ,Xi−1
n+1, · · · ,Xi−1

2n−1} and the right half
is Ri−1 = {Xi−1

0 ,Xi−1
1 , · · · ,Xi−1

n−1} and the subkey is
K i−1 = {K i−1

0 ,K i−1
1 , · · · ,K i−1

n−1}. The round function
of Simeck is

(Li ,Ri) = (Ri−1⊕F(Li−1)⊕K i−1,Li−1)

where

F(x) = (x∧ (x≪ 5))⊕ (x≪ 1)

for i = 1, · · ·nr . It can be seen that the round function
of Simeck is similar to that of SIMON. For coherence,
we denote the rotation offsets bya,b and c. In
Simeck,a= 0,b= 5,c= 1 and in SIMONa= 1,b=
8,c= 2.

The structure of the key schedule of Simeck is
similar to that of SPECK while the update function
reuses the round function of Simeck with constants
acting as round key. We refer the readers to Yanget
al.’s work (Yang et al., 2015) for details of Simeck.

3 DIFFERENTIAL ATTACK WITH
DYNAMIC KEY-GUESSING
TECHNIQUES

Differential attack (Biham and Shamir, 1991) is one
of the most powerful attacks on iterative block ci-
phers. If there is an input difference that results in
an output difference with high probability against a
reduced-round block cipher (called a differential), by
adding extra rounds before and after the differential,
an attacker can choose and encrypt an amount of
plaintext pairs that may satisfy the input difference,
and then guess the subkey bits in the added rounds
that influence the differential. Right guess will lead
conspicuous number of plaintext and ciphertext pairs
to the differential.

In 2014, Wanget al. proposed dynamic key-
guessing techniques to greatly reduce the number of
secret key bits that need to be guessed in differential
cryptanalysis (Wang et al., 2014a). These techniques
were based on observations that some subkey bits
can be deduced from equations invoked by certain
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Table 1: Comparison of Cryptanalysis Results of Simeck.

Versions
Total Attacked Time Data Success

Reference
Rounds Rounds Complexity Complexity Prob.

Simeck32/64
32

18 263.5 231 47.7% (Bagheri, 2015)

19 236 231 - (Kölbl and Roy, 2015)

20 262.6 232 - (Yang et al., 2015)

20 256.65 232 - (Zhang et al., 2015)

21 248.5 230 41.7% This paper

22 257.9 232 47.1% This paper

Simeck48/96
36

24 294 245 47.7% (Bagheri, 2015)

24 294.7 248 - (Yang et al., 2015)

24 291.6 248 - (Zhang et al., 2015)

26 262 247 - (Kölbl and Roy, 2015)

28 268.3 246 46.8% This paper

Simeck64/128
44

25 2126.6 264 - (Yang et al., 2015)

27 2120.5 261 47.7% (Bagheri, 2015)

27 2112.79 264 - (Zhang et al., 2015)

33 296 263 - (Kölbl and Roy, 2015)

34 2116.3 263 55.5% This paper

35 2116.3 263 55.5% This paper

input differences of AND operator. Different in-
put differences of AND operator result in different
conditions of subkey bits involved in the equations.
Before using these observations, attackers should find
out the sufficient bit conditions that act as equa-
tions in the extended rounds to make the differential
hold. Thus the preprocessing phase of differential
cryptanalysis with dynamic key-guessing techniques
is divided into two stages when a differential with
high probability of the cipher has been found: firstly,
generate the extended path and identify the sufficient
bit conditions to be processed and secondly generate
the related subkey bits corresponding to each bit
condition in the first stage. In the following we
illustrate the differential attacks with dynamic key-
guessing techniques in a general way and reveal some
details of the implementation of the technique. We
refer the readers to Wanget al.’s work (Wang et al.,
2014a) for some principles of the technique.

3.1 Generate the Extended Path with
Sufficient Bit Conditions

Suppose a differential with probabilityp coveringR
rounds has been found, we prefixr0 rounds on the
top and appendr1 rounds at the bottom. To get the

differential path of the prefixedr0 rounds, “decrypt”
the input difference of the differential according to
the rules that the output differences of AND operator
is 0 if and only if its input differences are(0,0).
Otherwise set the output difference of AND operator
to ∗. For the appendedr1 rounds, “encrypt” the output
difference of the differential according to the same
rules.

The bit conditions to be processed in the extended
path are sufficient bit-difference conditions to make
the differential path hold. Specifically, when the input
differences of AND operator are not(0,0) and its
output difference is definite (0 or 1, not∗), then this
output difference is a sufficient bit condition. Note
that the prefixedr0 rounds should be processed in
encryption direction to lable sufficient bit conditions
and the appendedr1 rounds should be processed in
decryption direction. In this step, we get an extended
path table with sufficient conditions labeled (see Table
4 for example).

3.2 Data Collection

Suppose there arel0 definite conditions in the plain-
text differences andl1 sufficient bit conditions in∆X1

according to the the extended path table. Divide
the plaintexts into 2l0+l1 structures with 22n−l0−l1
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plaintexts in each structure. In each structure, the
(l0+ l1) bits are constants.

For two structures with different bits in positions
where the differences are 1 in the above(l0+ l1) bits
in the extended path table, save the corresponding
ciphertexts into a table indexed by ciphertext bits in
positions where the differences are 0 in the last row
of the path table. Suppose there arel2 ciphertext
bits with difference 0, then for each such structure
pair, there are about 22(2n−l0−l1)−l2 plaintext pairs
remaining.

We build 2t plaintext structures, and filter out the
remaining pairs by decrypting one round. Suppose
there are anotherk bit conditions to be satisfied
in ∆Xr0+R+r1−1 after one round decryption of the
ciphertexts, then there are 2t−1+2(2n−l0−l1)−l2−k pairs
left. Store them in a tableT. At the same time, we
expect to getλr = 2t−1+2n−l0−l1 · p right pairs.

The plaintext pairs in the tableT can still be
filtered by bit conditions in∆X2 and∆Xr0+R+r1−2 as
some plaintext pairs may result in no subkey bit solu-
tion to equations regarding sufficient bit conditions in
∆X2 and∆Xr0+R+r1−2. The procedure of generating
subkey bits related to each sufficient bit condition is
described in next subsection.

3.3 Generate Related Subkey Bits for
Each Sufficient Bit Condition

For each sufficient bit condition, we get two kinds
of subkey bits related to this bit - the subkey bits as
variables of the equation and subkey bits that need to
be guessed to get the specific equation. In encryption
direction, we have an equation for sufficient bit con-
dition ∆Xi

j+n = 0 or 1 wherej ∈ [0,n−1] and

∆Xi
j+n =∆Xi−1

( j+a)%n+n∧Xi−1
( j+b)%n+n⊕∆Xi−1

( j+b)%n+n

∧Xi−1
( j+a)%n+n⊕∆Xi−1

( j+a)%n+n∧∆Xi−1
( j+b)%n+n

⊕∆Xi−1
( j+c)%n+n⊕∆Xi−2

j+n,

(1)
where

Xi−1
( j+b)%n+n =Xi−2

( j+b+a)%n+n∧Xi−2
( j+b+b)%n+n

⊕Xi−2
( j+b+c)%n+n⊕Xi−2

( j+b)%n⊕K i−2
( j+b)%n,

Xi−1
( j+a)%n+n =Xi−2

( j+a+a)%n+n∧Xi−2
( j+a+b)%n+n

⊕Xi−2
( j+a+c)%n+n⊕Xi−2

( j+a)%n⊕K i−2
( j+a)%n.

(2)
When (∆Xi−1

( j+a)%n+n,∆Xi−1
( j+b)%n+n) = (0,0) and

∆Xi−1
( j+c)%n+n⊕∆Xi−2

j+n 6= ∆Xi
j+n, it is an invalid equa-

tion and we get no subkey bit solution. Therefore, for

sufficient bit conditions in∆X2 and∆Xr0+R+r1−2, this
property can be used to filter out the wrong plaintext
pairs as∆X1,∆X0 and ∆Xr0+R+r1−1,∆Xr0+R+r1 are
independent of keys. For remaining plaintext pairs in
the tableT, filter out the wrong ones with sufficient
bit conditions in ∆X2 and ∆Xr0+R+r1−2. Put the
remaining plaintext pairs in a tableT1.

We refer to∆Xi−1
( j+a)%n+n,∆Xi−1

( j+b)%n+n,∆Xi−1
( j+c)%n+n

⊕ ∆Xi−2
j+n as parameter differences for equation

∆Xi
j+n = 0 or 1. For valid equations, the subkey bits

related to the equation∆Xi
j+n = 0 or 1 are divided

into the following 3 conditions:
1. When

(∆Xi−1
( j+a)%n+n,∆Xi−1

( j+b)%n+n) = (1,0),

the variables of the equation are the subkey bits that
are linear toXi−1

( j+b)%n+n and the subkey bits to be
guessed are those that influence

Xi−2
( j+b+a)%n+n,X

i−2
( j+b+b)%n+n,X

i−2
( j+b+c)%n+n,X

i−2
( j+b)%n

and have not been deduced or guessed before;
2. When

(∆Xi−1
( j+a)%n+n,∆Xi−1

( j+b)%n+n) = (0,1),

the variables of the equation are the subkey bits that
are linear toXi−1

( j+a)%n+n and the subkey bits to be
guessed are those that influence

Xi−2
( j+a+a)%n+n,X

i−2
( j+a+b)%n+n,X

i−2
( j+a+c)%n+n,X

i−2
( j+a)%n

and have not been deduced or guessed before;
3. When

(∆Xi−1
( j+a)%n+n,∆Xi−1

( j+b)%n+n) = (1,1),

the variables of the equation are the linear combina-
tion of subkey bits linear toXi−1

( j+b)%n+n and subkey

bits linear toXi−1
( j+a)%n+n and the subkey bits to be

guessed are those that influence

Xi−2
( j+b+a)%n+n,X

i−2
( j+b+b)%n+n,X

i−2
( j+b+c)%n+n,X

i−2
( j+b)%n,

Xi−2
( j+a+a)%n+n,X

i−2
( j+a+c)%n+n,X

i−2
( j+a)%n

and have not been deduced or guessed before.
For each text bit, we use a recursive algorithm

to determine the subkey bits that influence it and
subkey bits that are linear to it. The pseudo code is
in Algorithm 1.

For sufficient key bits in the appendedr1 rounds,
we process each bit in the decryption direction and
give the formulas and pseudo code in Appendix
5. After processing all sufficient bit conditions in
the prefixed and appended rounds, we get a table
of subkey bits variables corresponding to different
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Algorithm 1: Generate related key bits forXi
j in encryption

direction.

1: Input Roundi and bit positionj
2: Output: [In f luen keys,Linear keys]
3: function RELATEDKEYS(i, j)
4: In f luent keys= [ ], Linear keys=[ ]
5: if i = 0 then
6: return [In f luent keys,Linear keys]
7: else
8: if j < n then
9: return RELATEDKEYS(i −1, j +n)

10: else
11: [I0,L0]=RELATEDKEYS(i − 1,( j +

a)%n+n)
12: [I1,L1]=RELATEDKEYS(i − 1,( j +

b)%n+n)
13: [I2,L2]=RELATEDKEYS(i − 1,( j +

c)%n+n)
14: [I3,L3]=RELATEDKEYS(i −1, j%n)
15: Linear keys=L2∪L3∪ K i−1

j%n

16: In f luent keys= I0∪ I1∪ I2∪ I3∪K i−1
j%n

17: return [In f luent keys,Linear keys]
18: end if
19: end if
20: end function

parameter conditions for each sufficient bit condition
(see Table 5 for example).

It can be seen that whether a specific subkey bit
can be deduced in an equation corresponding to a
sufficient bit condition depends on the other three
parameter bit differences. Some bit differences may
act as parameters in more than one sufficient bit
conditions and therefore we should process such suf-
ficient bit conditions together. Specifically, we gather
sufficient bit conditions with related parameters into
one group and calculate the average number of subkey
bits values for the group. In each round, suppose we
put the original order of sufficient bit conditions in
Indexorder and the corresponding parameter sets in
Para sets, we use Algorithm 2 to group sufficient bit
conditions.

In an actual attack, for each round, firstly guess the
subkey bits to get the specific equations in this round.
Then deduce the values of subkey bit variables in the
equations according to parameter difference values
group by group. In thej-th group, if we guessg j sub-
key bits to get specific equations that totally involve
k j subkey bit variables and there aret j ,i parameter
conditions in each of which we correspondingly get
v j ,i values of the subkey bit variables, the average
number of values for the(g j + k j) subkey bits in

this group is 2g j · ∑i t j,i vj,i

∑i t j,i
. For all groups, we get

Algorithm 2 : Group sufficient bit conditions in one round.

1: procedure GROUP(Indexorder,Para sets)
2: Assert length(Indexorder)=length(Para sets)
3: k=0
4: while k<length(Indexorder) do
5: flag=0
6: j=k+1
7: while j <length(Indexorder) do
8: if Para sets[ j] ∩ Para sets[k] is not

emptythen
9: Indexorder[k]=Indexorder[k]∪

Indexorder[ j]
10: Remove Indexorder[ j] from

Indexorder
11: Para sets[k] = Para sets[k]∪

Para sets[ j]
12: Remove Para sets[ j] from

Para sets
13: flag=1
14: else
15: j++
16: end if
17: end while
18: if flag=0then
19: k++
20: end if
21: end while
22: end procedure

∏ j(2
g j · ∑i t j,i vj,i

∑i t j,i
) values of∑ j(g j + k j) subkey bits.

For all extended rounds (or say groups), if the number
of involved subkey bits (include the guessed ones and
deduced ones) is less than the length of the master key,
we are able to launch an attack with time complexity
less than exhaustive search.

Note that there are two types of repeats in subkey
bit variables and guessed subkey bits when combining
the numbers of values of subkey bits in all groups.
The first type is due to that some subkey bits are
variables of more than one group. The second type
is that a linear combination of some subkey bits is
a variable of an equation that may be deduced and
then each of the subkey bits is again need to be
guessed and thus one bit is repeated. When launching
an actual attack, all these bits should be preserved
as there are conditions that no specific value of the
subkey bit variable is get from an equation. However,
when calculating the complexity of the attack, we
should eliminate the repeated bits as we take expected
number of values of variables in each group.

3.4 Calculate Complexity of the Attacks

Given the differential with high probability and num-
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Table 3: The distribution of the characteristics of Simeck32 in the differential with input and output difference(0000,0002)→
(0002,0000). The invalid characteristics is due to the special property of the dependent inputs of the AND operations in
Simeck (Biryukov et al., 2014; Sun et al., 2014b; Sun et al., 2014c).

Prob. 2−38 2−40 2−41 2−42 2−43 2−44 2−45 2−46 2−47 2−48 2−49 2−50 Invalid

#Char. 4 62 52 427 637 2427 4384 12477 22742 48324 62039 50411 169458

Table 4: Sufficient Conditions of Extended Differential Path of 21-round Simeck32/64.

Rounds Input Differences of Each Round
0 1,∗,0,0,0,∗,∗,∗,0,∗,∗,∗,∗,1,∗,∗,∗,∗,∗,0,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗
1 0,∗,0,0,0,0,∗,0,0,0,∗,∗,∗,0,1,∗,1,∗,0,0,0,∗,∗,∗,0,∗,∗,∗,∗,1,∗,∗
2 0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,∗,0,0,0,0,∗,0,0,0,∗,∗,∗,0,1,∗
3 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1

3→16 13-round differential
16 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
17 1,∗,0,0,0,0,0,0,0,0,0,0,∗,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
18 ∗,∗,0,0,0,0,0,∗,0,0,0,∗,∗,0,0,1,1,∗,0,0,0,0,0,0,0,0,0,0,∗,0,0,0
19 ∗,∗,∗,0,0,0,∗,∗,0,0,∗,∗,∗,0,1,∗,∗,∗,0,0,0,0,0,∗,0,0,0,∗,∗,0,0,1
20 ∗,∗,∗,0,0,∗,∗,∗,0,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,0,0,0,∗,∗,0,0,∗,∗,∗,0,1,∗
21 ∗,∗,∗,0,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,0,0,∗,∗,∗,0,∗,∗,∗,∗,∗,∗,∗

Table 2: A differential characteristic of 13-round
Simeck32/64 with probability 2−38.

Rnds The input differences
0 0000000000000000 0000000000000010
1 0000000000000010 0000000000000000
2 0000000000000100 0000000000000010
3 0000000000001010 0000000000000100
4 0000000000010000 0000000000001010
5 0000000000111010 0000000000010000
6 0000000000001100 0000000000111010
7 0000000000101010 0000000000001100
8 0000000000010000 0000000000101010
9 0000000000001010 0000000000010000
10 0000000000000100 0000000000001010
11 0000000000000010 0000000000000100
12 0000000000000000 0000000000000010
13 0000000000000010 0000000000000000

ber of rounds that we add before and after the dif-
ferential, the program can give out the number of
all subkey bits involved in the extended rounds|sk|
and the number of solutions to these subkey bits for
each pair inT1, say Cs. A wrong subkey occurs
with probability pe =

Cs
2|sk| and the expected count of

a wrong subkey for all pairs inT1 is λe = Nr × pe.
Combining the complexity of searching subkey bits
involved in the extended paths that get more than
s = ⌊λr⌋ hits and the complexity of traversing the
remaining subkey bits, the time complexity of the
attack is dominated by

Tes= 2mn× (1−Poisscd f(s,λe)), (3)

where Poisscd f(·,y) is the cumulative distribution

function of Poisson distribution with expectationy.
The success probability is

1−Poisscd f(s,λr), (4)

where Poisscd f(s,λr) denotes the probability that
there is no subkey bits with more thanshits.

4 DIFFERENTIAL ATTACKS ON
SIMECK WITH DYNAMIC
KEY-GUESSING TECHNIQUES

4.1 A Differential of Simeck32/64

Though several differentials with high probability of
Simeck family were given (Kölbl and Roy, 2015),
we want to get new differentials with lower hamming
weight. Using automatic search method with MILP
techniques (Qiao et al., 2015; Sun et al., 2014a;
Sun et al., 2014b; Sun et al., 2014c), we find a 13-
round differential characteristic of Simeck32/64 with
probability 2−38 (see Table 2). Then we search for
all differential characteristics with the same input and
output differences and with probabilityq such that
2−50 ≤ q≤ 2−38. The distribution of the differential
characteristics is given in Table 3. Combing all the
differential characteristics we get that the probability
of the differential(0x0,0x2) → (0x2,0x0) is about
2−29.64.
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Table 5: Solutions of Subkey Bits in Round 2 of 21-round Simeck32/64.

Rounds Bit Conditions
Solutions of Key Conditions Leading

Pr PrF
Bits to Equations to Solutions

2(10)

Discard the pair (∆X1
17,∆X1

22,∆X0
17) = (0,0,0) 1

8

∆X2
17 = 1⇔ * (∆X1

17,∆X1
22,∆X0

17) = (0,0,1) 1
8

∆(X1
17∧X1

22) K0
1 (∆X1

17,∆X1
22) = (0,1) 1
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12 (∆X1

28,∆X1
17) = (0,1) 1

4
⊕∆X0

28= 0 K0
1 (∆X1
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4
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10 (∆X1

26,∆X1
31) = (0,1) 1

4

⊕∆X1
27⊕∆X0

26= 0 K0
15 (∆X1

26,∆X1
31) = (1,0) 1

4
K0
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4
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26,∆X1
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21) = (0,1) 1
4

∆X1
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21 ∗ (∆X1
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4
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4
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20 ∗ (∆X1
31,∆X0

31) = (0,1) 1
4

⊕∆X0
31= 1 K0

4 ∆X1
31 = 1 1

2
∆X2

25 = 0⇔
K0

9 1X1
25

⊕∆X1
26⊕∆X0

25= 0
∆X2

30 = 0⇔
K0

3 1X1
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⊕∆X1
31⊕∆X0

30= 0

In the first column, 2(10) means there are 10 bit conditions inRound 2. In the third column,∗ means the variables in this
equation can take both values (0 and 1) and a specific subkey bit means this bit takes a definite value. The bold lines are
group split lines.
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Table 6: Differential Attacks on Reduced Simeck.

Versions
Attacked |sk| λe λr

Chosen Data Time Success

Rounds Count Complexity Complexity Prob.

Simeck32/64 21 53 2−2.678 3.29 4 230 248.52 41.7%

Simeck32/64 22 54 2−1 2.56 3 232 257.88 47.1%

Simeck48/96 28 75 2−8.365 2.54 3 246 268.31 46.8%

Simeck64/128 34 82 2−1.678 3.94 4 263 2116.34 55.5%

Simeck64/128 35 118 2−1.678 3.94 4 263 2116.34 55.5%

4.2 Results on Simeck

We use differentials with high probability to eval-
uate the security of Simeck family regarding dif-
ferential attacks with dynamic key-guessing tech-
niques. The outputs of our program provide all
information about the subkey bits corresponding to
all sufficient bit conditions. Due to page limits,
we give the details of dynamic key-guessing data
in http://pan.baidu.com/s/1jGyBwj0 and give basic
information of the attacks in the following.

For Simeck32/64, we adapt two differentials. The
first one is (0x8000,0x4011) → (0x4000,0x0) that
covers 13 rounds with probability 2−27.28 (Kölbl and
Roy, 2015). We prefix 3 rounds and append 5
rounds to the differential. Building 214 structures
with 216 plaintexts in each structure we are expect to
get 231.2 pairs in T1 and finally 3.29 right pairs. In
the dynamic key-guessing procedure we are expect
to get 219.11 values of 53 subkey bits. According
to the calculation method in Section 3.4, the time
complexity and success probability of the attack are
248.52 and 41.7%. The extended differential path
of the 21-round Simeck32/64 is in Table 4. We
demonstrate the solutions of subkey bits in Round 2
in Table 5.

The second differential we use is the one from
Section 4.1. We add 4 rounds on the top and 5 rounds
at the bottom. With 218 structures containing 214

plaintexts each, we are expected to get 231.9 pairs
in T1 and finally 2.56 right pairs. We are expect to
get 221.09 values of 54 subkey bits in dynamic key-
guessing procedure. The time complexity and success
probability are 257.88 and 47.1%. The extended
differential path of 22-round Simeck32/64 is in Table
7 in Appendix.

For Simeck48/96, we use the differential
(0x400000,0xe00000)→ (0x400000,0x200000) that
covers 20 rounds with probability 2−43.65 (Kölbl and
Roy, 2015). We append 4 rounds on top and 4 rounds
at bottom. With 218 structures with 228 plaintexts in
each, we are expected to get 250.46 plaintext pairs in

T1 and finally 2.54 right pairs. There are 232.89 values
of 75 subkey bits in dynamic key-guessing procedure
and the time complexity and success probability are
268.31 and 46.8%. The extended differential path of
the 28-round Simeck48/96 is in Table 8 in Appendix.

For Simeck64/128, we use the differential
(0x0,0x4400000) → (0x8800000,0x400000) that
covers 26 rounds with probability 2−60.02 (Kölbl and
Roy, 2015) . We append 4 rounds on top and 4 rounds
at bottom. With 242 structures with 221 plaintexts in
each, we are expected to get 238.59 plaintext pairs in
T1 and finally 3.94 right pairs. There are 241.72 values
of 82 subkey bits in dynamic key-guessing procedure
and the time complexity and success probability are
2116.27 and 55.5%. If we add one more round on
top, we are able to attack 35-round Simeck64/128
with the same data and time complexity and success
probability. The difference is that we choose 231

structures of 232 plaintexts in each to encrypt, and
expect to get 249.05 pairs in T1 and 267.26 values
of 118 subkey bits in the dynamic key guessing
procedure. The extended differential path of the
35-round Simeck64/128 is in Table 9 in Appendix.

The data of the attacks on all reduced versions of
Simeck are summarized in Table 6.

5 CONCLUSION

In this paper, we apply Wanget al.’s dynamic key-
guessing techniques to a new lightweight block cipher
family Simeck and give cryptanalysis results on it.
The differentials we use include ones in references
and also the one we get using MILP based method.
We implement the dynamic key-guessing techniques
in a program and in some way it can help to au-
tomatically give the security estimation of SIMON
and Simeck like block ciphers regarding differential
attacks. As far as we are concerned, the results
on Simeck in this paper are the best ones in terms
of rounds attacked. Future work includes finding
differentials with lower hamming weight that is more
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adaptable to dynamic key-guessing techniques and
expand the dynamic key-guessing techniques to block
ciphers of other structures.
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Table 7: Sufficient Conditions of Extended Differential Path of 22-round Simeck32/64.

Rounds Input Differences of Each Round
0 0,0,0,∗,∗,0,0,∗,∗,∗,0,1,∗,∗,∗,∗,0,0,∗,∗,∗,0,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗
1 0,0,0,0,∗,0,0,0,∗,∗,0,0,1,∗,∗,0,0,0,0,∗,∗,0,0,∗,∗,∗,0,1,∗,∗,∗,∗
2 0,0,0,0,0,0,0,0,0,∗,0,0,0,1,∗,0,0,0,0,0,∗,0,0,0,∗,∗,0,0,1,∗,∗,0
3 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,∗,0,0,0,1,∗,0
4 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0

4→17 13-round differential
17 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
18 0,0,0,0,0,0,0,0,0,∗,0,0,0,1,∗,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0
19 0,0,0,0,∗,0,0,0,∗,∗,0,0,1,∗,∗,0,0,0,0,0,0,0,0,0,0,∗,0,0,0,1,∗,0
20 0,0,0,∗,∗,0,0,∗,∗,∗,0,1,∗,∗,∗,∗,0,0,0,0,∗,0,0,0,∗,∗,0,0,1,∗,∗,0
21 0,0,∗,∗,∗,0,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,0,0,0,∗,∗,0,0,∗,∗,∗,0,1,∗,∗,∗,∗
22 0,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,0,0,∗,∗,∗,0,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗

Table 8: Sufficient Conditions of Extended Differential Path of 28-round Simeck48/96.

Rounds Input Differences of Each Round
0 ***000000***0**************0***0****************
1 ***0 0000000000*** 0**** 1****000000***0***********
2 ***0000000000000000*** 01***00000000000***0****1*
3 111000000000000000000000***0000000000000000***01
4 010000000000000000000000111000000000000000000000

4→24 20-round differential
24 010000000000000000000000001000000000000000000000
25 1*100000000000000000*000010000000000000000000000
26 ***000000000000*000***011*100000000000000000*000
27 ***0000000*000***0****1****00 0000000000*000*** 01
28 ***00*000***0**************0 000000*000*** 0**** 1*

Table 9: Sufficient Conditions of Extended Differential Path of 34-round Simeck64/128.

Rounds Input Differences of Each Round
0 **********0000000*000**00***0*************00*000**0 0***0********
1 *0**** 1***00 0000000000*000** 00************0000000*000**00***0***
2 *00*** 01**00000000000000000*000**0****1***000000000000*000**00**
3 *000**0 01*0000000000000000000000*00***01**00000000000000000*000*
4 00000100010000000000000000000000*000**001*0000000000000000000000
5 0000000000000000000000000000000000000100010000000000000000000000

5→31 26-round differential
31 0000100010000000000000000000000000000000010000000000000000000000
32 000**001*1000000000000000000000*00001000100000000000000000000000
33 00***01***0000000000000000*000**000**0 01*1000000000000000000000*
34 0****1****00000000000*000**00*** 00*** 01***0000000000000000*000**
35 **********000000*000**00***0**** 0**** 1****0 0000000000*000** 00***

APPENDIX

Related Keys in Decryption Direction

For sufficient bit condition ∆Xi
j = 0 or 1 and

j ∈ [0,n − 1], in decrypt direction we have

∆Xi
j =∆Xi+1

( j+b)%n∧Xi+1
( j+a)%n⊕∆Xi+1

( j+a)%n∧Xi+1
( j+b)%n

⊕∆Xi+1
j+b∧∆Xi+1

( j+a)%n⊕∆Xi+1
( j+c)%n⊕∆Xi+2

j ,

(5)
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where

Xi+1
( j+a)%n =Xi+2

( j+a+b)%n∧Xi+2
( j+a+a)%n⊕Xi+2

( j+a+c)%n⊕
Xi+3
( j+a)%n⊕K i+1

( j+a)%n,

Xi+1
( j+b)%n =Xi+2

( j+b+b)%n∧Xi+2
( j+b+a)%n⊕Xi+2

( j+b+c)%n⊕
Xi+3
( j+b)%n⊕K i+1

( j+b)%n.

(6)
Algorithm 3 demonstrates how to get subkey bits

that influenceXi
j and that are linear toXi

j .

Algorithm 3: Generate related key bits forXi
j in decryption

direction.

1: Input: Roundi and bit positionj
2: Output: [In f luen keys,Linear keys]
3: function RELATEDKEYS(i, j)
4: In f luent keys= [ ], Linear keys=[ ]
5: if i = r0+R+ r1 then
6: return [In f luent keys,Linear keys]
7: else
8: if j ≥ n then
9: return RELATEDKEYS(i+1, j%n)

10: else
11: [I0,L0]=RELATEDKEYS(i,( j +a)%n+n)
12: [I1,L1]=RELATEDKEYS(i,( j +b)%n+n)
13: [I2,L2]=RELATEDKEYS(i,( j +c)%n+n)
14: [I3,L3]=RELATEDKEYS(i+1, j +n)
15: Linearkeys=L2∪L3∪ K i

j

16: In f luent keys= I0∪ I1∪ I2∪ I3∪K i
j

17: return [In f luent keys,Linear keys]
18: end if
19: end if
20: end function

Sufficient Conditions of Extended
Differential Path

In the following, we provide the sufficient
conditions of extended differential paths of 22-
round Simeck32/64, 28-round Simeck48/96 and
35-round Simeck64/128.
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