A Methodology for Deriving Conceptual Data Models from Systems Engineering Artefacts

Christian Hennig, Christian Hennig, Harald Eisenmann, Harald Eisenmann, Alexander Viehl, Alexander Viehl, Oliver Bringmann, Oliver Bringmann

Abstract

This paper presents a novel methodology for deriving Conceptual Data Models in the scope of Model-based Systems Engineering. Based on an assessment of currently employed methodologies, substantial limitations of the state of the art are identified. Consequently, a new methodology, overcoming present shortcomings, is elaborated, containing detailed and prescriptive guidelines for deriving conceptual data models used for representing engineering data in a multi-disciplinary design process. For highlighting the applicability and benefits of the approach, the derivation of a semantically strong conceptual data model in the context of Model-based Space Systems Engineering is presented as a case study.

References

  1. CogNIAM.eu, 2015. CogNIAM.eu. [Online] Available at: http://www.cogniam.eu/
  2. Eisenmann, H., 2012. VSD Final Presentation. [Online] Available at: http://www.vsd-project.org/download/ presentations/VSD_P2_FP_2012-05-15_v3.pdf/
  3. ESA, 2009. Space engineering - System engineering general requirements. ESA Standard ECSS-E-ST-10C. s.l.:s.n.
  4. ESA, 2011. Space engineering - Space system data repository. ESA Technical Memorandum ECSS-E-TM10-23A. s.l.:s.n.
  5. ESA, 2012. The Virtual Spacecraft Design Project. [Online] Available at: http://vsd.esa.int/
  6. ESA, 2013. EGS-CC - European Ground Systems - Common Core. [Online] Available at: http://www.egscc.esa.int/
  7. Fernández, M., Gómez-Pérez, A. & Juristo, N., 1997. METHONTOLOGY: From Ontological Art Towards Ontological Engineering, AAAI Technical Report SS97-06, s.l.: s.n.
  8. Fischer, P. M., Eisenmann, H. & Fuchs, J., 2014. Functional Verification by Simulation based on Preliminary System Design Data. 6th International Workshop on Systems and Concurrent Engineering for Space Applications (SECESA), 8-10 October.
  9. Gómez-Pérez, A., Fernández-Lopez, M. & Corcho, O., 2004. Ontological Engineering. London: Springer.
  10. Halpin, T. & Morgan, T., 2008. Information Modeling and Relational Databases. 2nd ed. Burlington: Morgan Kaufmann.
  11. Hennig, C. & Eisenmann, H., 2014. Applying Selected Knowledge Management Technologies and Principles for Enabling Model-based Management of Engineering Data in MBSE. 6th International Workshop on Systems and Concurrent Engineering for Space Applications (SECESA), 8-10 October.
  12. Hennig, C. et al., 2016. SCDML: A Language for Conceptual Data Modeling in Modle-Based Systems Engineering. 4th International Conference on ModelDriven Engineering and Software Development, 19-21 February.
  13. Hong, S. & Maryanski, F. J., 1990. Using a Meta Model to Represent Object-Oriented Data Models. 6th International Conference on Data Engineering, 5-9 Febuary, pp. 11-19.
  14. INCOSE, 2014. Systems Engineering Vision 2025. [Online] Available at: http://www.incose.org/docs/defaultsource/aboutse/se-vision-2025.pdf?sfvrsn=4
  15. Kogalovsky, M. R. & Kalinichenko, L. A., 2009. Conceptual and Ontological Modeling in Information Systems. Programming and Computer Software, 35(5), pp. 241-256.
  16. Leung, C. M. R. & Nijssen, G. M., 1998. Relational database design using the NIAM Conceptual Schema. Information Systems, 13(2), pp. 219-227.
  17. NASA, 2007. NASA Systems Engineering Handbook (NASA-SP-2007-6105) Rev1, s.l.: s.n.
  18. OMG, 2015. OMG Systems Modeling Language (OMG SysML). s.l.:s.n.
  19. Studer, R., Benjamins, V. R. & Fensel, D., 1998. Knowledge Engineering: Principles and Methods. Data & Knowledge Engineering, Band 25, pp. 161-197.
  20. Suárez-Figueroa, M. C., 2010. NeOn Methodology for Building Ontology Networks, Madrid: Universidad Politécnica de Madrid.
  21. Sure, Y., Staab, S. & Studer, R., 2004. On-To-Knowledge Methodology (OTKM). Handbook on Ontologies, pp. 117-132.
Download


Paper Citation


in Harvard Style

Hennig C., Eisenmann H., Viehl A. and Bringmann O. (2016). A Methodology for Deriving Conceptual Data Models from Systems Engineering Artefacts . In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD, ISBN 978-989-758-168-7, pages 497-508. DOI: 10.5220/0005676604970508


in Bibtex Style

@conference{modelsward16,
author={Christian Hennig and Harald Eisenmann and Alexander Viehl and Oliver Bringmann},
title={A Methodology for Deriving Conceptual Data Models from Systems Engineering Artefacts},
booktitle={Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,},
year={2016},
pages={497-508},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005676604970508},
isbn={978-989-758-168-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,
TI - A Methodology for Deriving Conceptual Data Models from Systems Engineering Artefacts
SN - 978-989-758-168-7
AU - Hennig C.
AU - Eisenmann H.
AU - Viehl A.
AU - Bringmann O.
PY - 2016
SP - 497
EP - 508
DO - 10.5220/0005676604970508