Gaining Insight from Physical Activity Data using a Similarity-based Interactive Visualization

Arkaitz Artetxe, Gorka Epelde, Andoni Beristain, Ane Murua, Roberto Álvarez

Abstract

This paper presents a new interactive visualization approach which aims to help and support the user in gaining insight over his physical activity data. The main novelty of the proposed visualization approach is the representation of similarities in the physical activity patterns in time using data clustering techniques, in addition to the continuous physical activity representation over a circular chart. This grouping of similar activity patterns helps identifying meaningful events or behaviors, combined with the periodicity highlighting circular charts. The user is able to interact with the visualization during the knowledge discovery process by changing the represented time-scale, time-frame and the number of clusters used for the user’s physical activity pattern categorization. Additionally, the proposed visualization approach allows to easily report and store the insights gained during the visual data analysis process, by adding a textual description linked to the particular user tailored visualization configuration which led to that insight.

References

  1. Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2), 191-203. http://doi.org/ 10.1016/0098-3004(84)90020-7.
  2. Carlis, J. V., & Konstan, J. A. (1998). Interactive Visualization of Serial Periodic Data. In Proceedings of the 11th Annual ACM Symposium on User Interface Software and Technology (pp. 29-38). New York, NY, USA: ACM. http://doi.org/10.1145/288392.288399.
  3. Choe, E., Lee, B., & Schraefel, M. (2015). Revealing Visualization Insights from Quantified-Selfers' Personal Data Presentations. IEEE Computer Graphics and Applications, PP(99), 1-1. http://doi.org/10.1109/ MCG.2015.51.
  4. Consolvo, S., McDonald, D. W., & Landay, J. A. (2009). Theory-driven Design Strategies for Technologies That Support Behavior Change in Everyday Life. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 405-414). New York, NY, USA: ACM. http://doi.org/ 10.1145/1518701.1518766.
  5. Dork, M., Gruen, D., Williamson, C., & Carpendale, S. (2010). A Visual Backchannel for Large-Scale Events. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1129-1138. http://doi.org/ 10.1109/TVCG.2010.129.
  6. Douma, M., Ligierko, G., Ancuta, O., Gritsai, P., & Liu, S. (2009). SpicyNodes: Radial Layout Authoring for the General Public. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1089-1096. http://doi.org/10.1109/TVCG.2009.183.
  7. Fan, C., Forlizzi, J., & Dey, A. K. (2012). A Spark of Activity: Exploring Informative Art As Visualization for Physical Activity. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (pp. 81-84). New York, NY, USA: ACM. http://doi.org/ 10.1145/2370216.2370229
  8. Faridani, S., Bitton, E., Ryokai, K., & Goldberg, K. (2010). Opinion Space: A Scalable Tool for Browsing Online Comments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1175- 1184). New York, NY, USA: ACM. http://doi.org/10.1145/1753326.1753502.
  9. Froehlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B., & Landay, J. A. (2009). UbiGreen: Investigating a Mobile Tool for Tracking and Supporting Green Transportation Habits. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1043-1052). New York, NY, USA: ACM. http://doi.org/ 10.1145/1518701.1518861.
  10. Froehlich, J., Findlater, L., Ostergren, M., Ramanathan, S., Peterson, J., Wragg, I., … Landay, J. A. (2012). The Design and Evaluation of Prototype Eco-feedback Displays for Fixture-level Water Usage Data. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2367-2376). New York, NY, USA: ACM. http://doi.org/ 10.1145/2207676.2208397.
  11. Gotz, D., Wang, F., & Perer, A. (2014). A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. Journal of Biomedical Informatics, 48, 148-159. http://doi.org/10.1016/j.jbi.2014.01.007.
  12. Huang, D., Tory, M., Aseniero, B., Bartram, L., Bateman, S., Carpendale, S., … Woodbury, R. (2014). Personal Visualization and Personal Visual Analytics. IEEE Transactions on Visualization and Computer Graphics, Early Access Online. http://doi.org/10.1109/ TVCG.2014.2359887.
  13. Jafarinaimi, N., Forlizzi, J., Hurst, A., & Zimmerman, J. (2005). Breakaway: An Ambient Display Designed to Change Human Behavior. In CHI 7805 Extended Abstracts on Human Factors in Computing Systems (pp. 1945-1948). New York, NY, USA: ACM. http://doi.org/10.1145/1056808.1057063.
  14. Khot, R. A., Pennings, R., & Mueller, F.. “Floyd.” (2015). EdiPulse: Supporting Physical Activity with Chocolate Printed Messages. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (pp. 1391-1396). New York, NY, USA: ACM. http://doi.org/10.1145/2702613.2732761.
  15. Khovanskaya, V., Baumer, E. P. S., Cosley, D., Voida, S., & Gay, G. (2013). “Everybody Knows What You'Re Doing”: A Critical Design Approach to Personal Informatics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 3403- 3412). New York, NY, USA: ACM. http://doi.org/10.1145/2470654.2466467.
  16. Larsen, J. E., Cuttone, A., & Jørgensen, S. L. (2013). QS Spiral: Visualizing Periodic Quantified Self Data. In Proceedings of CHI 2013 Workshop on Personal Informatics in the Wild: Hacking Habits for Health & Happiness. Retrieved from http://orbit.dtu.dk/ fedora/objects/orbit:127504/datastreams/file_d58b9d7 9-608a-46b5-8bde-f250a1d0adcd/content.
  17. Lin, J. J., Mamykina, L., Lindtner, S., Delajoux, G., & Strub, H. B. (2006). Fish'n'Steps: Encouraging Physical Activity with an Interactive Computer Game. In P. Dourish & A. Friday (Eds.), UbiComp 2006: Ubiquitous Computing (pp. 261-278). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/ chapter/10.1007/11853565_16.
  18. Marcengo, A., & Rapp, A. (2013). Visualization of Human Behavior Data: The Quantified Self. In Huang, L.H. & Huang, W. (Eds.), Inovative Approaches of Data Visualization and Visual Analytics (pp. 236-265). IGI Global, Hershey.
  19. Marcus, A., Bernstein, M. S., Badar, O., Karger, D. R., Madden, S., & Miller, R. C. (2011). Twitinfo: Aggregating and Visualizing Microblogs for Event Exploration. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 227- 236). New York, NY, USA: ACM. http://doi.org/10.1145/1978942.1978975.
  20. McDuff, D., Karlson, A., Kapoor, A., Roseway, A., & Czerwinski, M. (2012). AffectAura: An Intelligent System for Emotional Memory. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 849-858). New York, NY, USA: ACM. http://doi.org/10.1145/2207676.2208525.
  21. Preuveneers, D., & Berbers, Y. (2008). Mobile Phones Assisting with Health Self-care: A Diabetes Case Study. In Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services (pp. 177-186). New York, NY, USA: ACM. http://doi.org/10.1145/ 1409240.1409260.
  22. Rogers, Y., Hazlewood, W. R., Marshall, P., Dalton, N., & Hertrich, S. (2010). Ambient Influence: Can Twinkly Lights Lure and Abstract Representations Trigger Behavioral Change? In Proceedings of the 12th ACM International Conference on Ubiquitous Computing (pp. 261-270). New York, NY, USA: ACM. http://doi.org/10.1145/1864349.1864372.
  23. Shen, Z., & Ma, K.-L. (2008). MobiVis: A Visualization System for Exploring Mobile Data. In Visualization Symposium, 2008. PacificVIS 7808. IEEE Pacific (pp. 175-182). http://doi.org/10.1109/PACIFICVIS.2008.4475474.
  24. Van Wijk, J. J., & Van Selow, E. R. (1999). Cluster and Calendar Based Visualization of Time Series Data. In Proceedings of the 1999 IEEE Symposium on Information Visualization (p. 4-). Washington, DC, USA: IEEE Computer Society. Retrieved from http://dl.acm.org/citation.cfm?id=857189.857665.
  25. Weber, M., Alexa, M., & Muller, W. (2001). Visualizing time-series on spirals. In IEEE Symposium on Information Visualization, 2001. INFOVIS 2001 (pp. 7- 13). http://doi.org/10.1109/INFVIS.2001.963273.
Download


Paper Citation


in Harvard Style

Artetxe A., Epelde G., Beristain A., Murua A. and Álvarez R. (2016). Gaining Insight from Physical Activity Data using a Similarity-based Interactive Visualization . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 115-122. DOI: 10.5220/0005675701150122


in Bibtex Style

@conference{ivapp16,
author={Arkaitz Artetxe and Gorka Epelde and Andoni Beristain and Ane Murua and Roberto Álvarez},
title={Gaining Insight from Physical Activity Data using a Similarity-based Interactive Visualization},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, (VISIGRAPP 2016)},
year={2016},
pages={115-122},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005675701150122},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, (VISIGRAPP 2016)
TI - Gaining Insight from Physical Activity Data using a Similarity-based Interactive Visualization
SN - 978-989-758-175-5
AU - Artetxe A.
AU - Epelde G.
AU - Beristain A.
AU - Murua A.
AU - Álvarez R.
PY - 2016
SP - 115
EP - 122
DO - 10.5220/0005675701150122