
ShaderBase: A Processing Tool for Shaders in Computational Arts
and Design

Andrés Felipe Gómez1, Jean Pierre Charalambos1 and Andrés Colubri1,2
1Departamento de Ingeniería de Sistemas, Universidad Nacional de Colombia, Bogotá, Colombia

2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, U.S.A.

Keywords: Shader Programming, GLSL, Processing Language, Interactive Arts, Computational Design, Data
Visualization, Database, Git.

Abstract: We introduce a new software tool called ShaderBase that facilitates using, sharing, and curating GLSL
shaders in computational design, interactive arts, and data visualization. This tool is part of the Processing
programming environment, an open-source project widely used for teaching and production in the context
of media arts and design. Shaders are a crucial component in the development of large-scale data
visualizations, interactive installations, real-time rendering tools, videogames, virtual reality applications,
etc. However, their use requires advanced shader programming skills, and the creation of new shader-based
effects demands a deep understanding of the graphics pipeline in modern Graphics Processing Units
(GPUs). ShaderBase uniquely addresses these issues by allowing Processing users to easily upload and
share shaders via an underlying Git repository. ShaderBase operates in close integration with Processing’s
interface, so that users can incorporate shaders into their programs with minimal effort. Furthermore, the
shaders indexed in ShaderBase take advantage of Processing’s drawing API, and incentives the use of
shaders among artists and designers who might not be able to do so otherwise.

1 INTRODUCTION

The continued advances in graphics hardware,
together with the evolution of low-level shading
languages, have opened many possibilities for real-
time rendering across a wide range of platforms and
devices. Shader programming has become a
fundamental resource in today’s applications of
Computer Graphics (CG). Real-time rendering
benefits from the performance and flexibility offered
by custom shaders, and with the rise of
programmable pipelines, shader programming
turned into a fundamental skill.

In the context of computational design,
information visualization and interactive media, the
necessity of making CG more accessible has
motivated the creation of frameworks and APIs to
facilitate programming among artists and designers
(Orr, 2009). The Processing project (Processing
Foundation I) is a well-known example of such
initiatives to increase computer literacy within the
design and visual arts, and visual literacy within
technology and engineering. Processing, which in its
core consists of a Java-based programming language

together with a minimal development environment,
was initiated by Casey Reas and Ben Fry at the MIT
Media Lab back in 2001. Today, the project has
expanded substantially, thanks to its open source
nature and community involvement, and it is used
around the world as a teaching medium as well as a
production tool (Reas and Fry, 2014).

Processing’s simple API combined with an
unobtrusive development environment allows
beginners to obtain initial visual results quickly and
then to refine their programs by “sketching“
progressively more complex versions of the code.
The drawing API in Processing is comprised of
around 300 functions, inspired by several graphics
libraries, mainly Postscript, QuickDraw, OpenGL,
and Renderman (Processing Foundation II).

Although shaders are an essential part in the
development of graphical applications, they are not
as popular as they could be, particularly in the fields
of computational arts and design. One of the reasons
for this situation is the need of advanced
programming knowledge in shading languages.
Although there are some online shader libraries,
their usefulness as resources for beginners is limited:

Gomez, A., Charalambos, J. and Colubri, A.
ShaderBase: A Processing Tool for Shaders in Computational Arts and Design.
DOI: 10.5220/0005673201890194
In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) - Volume 2: IVAPP, pages 191-196
ISBN: 978-989-758-175-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

191

the NVIDIA shader library (NVIDIA, 2008) was last
updated in 2008, and Geeks3D shader library
(Geeks3D, 2015) is geared toward CG enthusiasts,
while GLSL sandbox (Cabello, 2015), ShaderToy
(Quilez, 2015), and VertexShaderArt (Tavares,
2015), are focused on WebGL. This limits
inexperienced users who wish to start experiment
with shaders through Processing’s shader API.
ShaderBase enables all Processing users -beginner
and advanced alike- to explore, interact, and take
advantage of this API by allowing them to
download, upload, and edit the shaders indexed into
a Git repository. Our approach to simplify shader
programming in Processing is unique in that it is
closely integrated with Processing’s environment
and uses Git as the underlying database. ShaderBase
lets users to re-use shaders within their own code
and share them with other members of the
Processing community, as well as to look for
specific shader effects with ShaderBase’s search
functionality. Even though the tool is specifically
geared towards Processing, it could be quickly re-
implemented for other interactive arts and design
frameworks, such as OpenFrameworks and Cinder,
and the shaders archived in the underlying Git
repository could be repurposed for other languages
and platforms (mobile, webGL) with minimal code
changes.

2 SHADERS IN PROCESSING

The shader API in Processing is based on a single
class called PShader that encapsulates a complete
shader program including a vertex and a fragment
stage. This class exposes methods to set the values
of the uniform variables declared in the GLSL code.
The code listing below shows a simple example
where a negative effect shader is loaded to render
the scene.

// Processing code
PShader neg;
PImage img;
void setup() {
 size(800, 600, P2D);
 img = loadImage("img.jpg");
 neg = loadShader("fragment.glsl");
}
void draw() {
 shader(neg);
 image(img, 0, 0);
}

// fragment.glsl

uniform sampler2D texture;
varying vec4 vertColor;
varying vec4 vertTexCoord;
void main() {
 vec4 col = texture2D(texture,
 vertTexCoord.st);
 gl_FragColor = vec4(1.0 –
 col.rgb, 1) * vertColor;
}

A key consideration when incorporating shader
programming into pre-existing “creative coding”
frameworks such as Processing, which is specifically
geared towards less technical users such as
computational designers and artists, is how to blend
the new functionality with the existing API. Since
often times the typical Processing user is not able to
write his own shaders, Processing already
implements several rendering paths that cover
different usage scenarios: high-quality 2-D drawing
with antialiasing and accurate line strokes, 3-D
rendering with a Blinn–Phong, Gouraud lighting
model, where interactive performance is prioritized
over more accurate shading/texturing algorithms. All
of this functionality is implemented via default
GLSL shaders built into the OpenGL renderer in
Processing. Details are provided in (Colubri) and
(Gómez et al., 2016).

3 ShaderBase

Our main goal with ShaderBase was to create a
graphical interface and an underlying database to
allow any Processing user to easily share GLSL
shaders, facilitate the use of Processing’s shader
API, and promote the application of shading effects
particularly among practitioners of digital arts and
design. The user does not require advanced
programming knowledge in order to run and execute
the shaders indexed in the database. The tool simply
downloads the shader directly into the Processing
program (called a “sketch” in Processing’s
terminology), together with all the additional files
needed to run the shader. ShaderBase stores all the
shader information in the remote repository, and
when the user installs the tool in Processing this
information is retrieved into the tool. ShaderBase
also allows searching shaders with a specific tag.
The design of ShaderBase’s data model is discussed
in the section 3.1 and the user interface is described
in the section 3.2.

IVAPP 2016 - International Conference on Information Visualization Theory and Applications

192

Figure 1: Data flow and user interface elements in ShaderBase.

3.1 ShaderBase Data Model

A basic requirement for ShaderBase is be able to
upload, modify, request, and download any shader
information at any time without losing it during the
transfer, or having any corruption in the saved data
that could affect the execution of the shader.
Another important future-proofing feature is the
possibility of porting the shader files into other
coding frameworks. There are some options that
could solve all these design needs, such as SQL
database, Object Oriented Database, and Mobile
Database (Foster and Godbole, 2014). However,
there are some limitations such as the language used
by Processing (Java) restricting the options for the
development of such database. Most SQL databases
created in Java require a JDBC driver that functions
as a wrapper between database and the application.
The JDBC driver asks user authentication every time
when the user logs into the database and modifies
the information in the tables, which would slow
down the response when the user selects, downloads,
and uploads a shader. In order to upload shaders, the
tool needs to be connected to the database to reflect
the changes with other users and update the tool, and
thus it would require a 24/7 SQL dedicated server
storing the information specifying all shaders. An
SQL database does not allow seeing the indexed

data directly without a SQL program, and a query is
required to access the data. Furthermore, an SQL
server does not record the changes done by other
users to the indexed files.

In the other hand, we found Git to be a better
solution for these limitations (Chacon and Straub,
2014). A user can commit changes into the database
at any time and they will be reflected after a push. It
is not needed to have a dedicated 24/7 server since
each user will have a clone of the data indexed and
they can work in a local environment. The
communication between Git and the tool is done
using a library (Jgit) that is faster than a JDBC
driver. All the information hosted in a Git repository
can be accessed at any time with a simple browser
without the need of querying it. Since Git
incorporates Version Control (VC), all the changes
done to the files are recorded so it is easy to recover
missing files or corrupted data, also the snapshot
done by Git prevents any unexpected change on the
files. The data flow is show in Figure 1.

In order to develop ShaderBase, we had to
identify the data required to completely define a
valid shader in Processing, where and how to store
that data, and how to send the data back and forth
between Processing and ShaderBase. Each shader
record comprises the following files:
▪ Sketch File: Processing source code where the

ShaderBase: A Processing Tool for Shaders in Computational Arts and Design

193

PShader object is declared and the shader file is
loaded.

▪ Shader File: fragment, vertex, geometry or
tessellation shader GLSL source code.

▪ Indexed File: File containing shader metadata
(such as tags and user information) used to query
the database.

▪ Shader Snapshot File

ShaderBase stores all the information in a local
clone of a master remote Git repository. All copies
of ShaderBase use ShaderDB to store data remotely,
future versions might allow to select a different
remote repository, so users can create independent
collections of shaders. ShaderDB stores each shader
using the following file structure:

`-- ShaderData/
 `-- Shader1/
 |-- Code/
 | `-- Shader1.glsl
 |-- Shader1.jpg
 |-- Shader1.pde
 |-- Shader1.txt
 `-- Tabs/
 `-- Tab_n.pde

The folder Code has all the extra data required to run
a shader, the minimal data saved in this folder would
be the GLSL code file. However, some shaders will
require extra files in order to run in Processing, in
such cases ShaderBase will download and import
those files automatically. The folder Tabs will only
appear when a shader requires multiple tabs in the
sketch. The index text file is created after filling a
small questionnaire when a user decides to upload a
shader no matter if it is going to be saved just in the
local machine or if it is going to be shared. This file
has all the information required to provide an
accurate search, including tags, name, author and
description for each shader.

Accessing Git from Java is a non-trivial task,
however there are several libraries that that can be
used for this purpose: JGit, JavaGit, Git Hub API for
Java, etc. All these libraries have strengths and
disadvantages. We selected JGit because it is the
library that implements most of the Git commands.
Our tests indicate that JGit is a slightly faster than
the other libraries and has fewer bugs. In addition to
that, it allows accessing the Git main file structure
[JGit API] through code to check the commits,
whicht helps preventing missing commits or
collision with commits from other users. JGit is
actively developed by the Eclipse EGit group, which
ensures that is kept updated to the last available Git
version.

The database management is performed by
means of the following Git commands:

• Clone: downloads all the information stored at
the remote repository only when the tool is run
for the first time.

• Commit: stores newly created shader records into
the local repository.

• Fetch: downloads new or modified records from
the remote repository.

• Merge: incorporates (fetched) changes into the
local repository.

• Pull: runs a fetch command followed by a merge
one.

• Push: updates the remote repository.

When the user uploads a shader, ShaderBase does a
commit to the local repository, and if the user shares
it and ShaderBase is up-to-date with the shaders
indexed in ShaderDB, then the shader is pushed to
the remote repository. In the case that ShaderBase is
not in sync with ShaderDB, and then the shaders
uploaded and shared by the user will be reflected in
ShaderDB after the next update performed when the
tool starts up. ShaderBase checks for updates by
doing a Git fetch; the tool checks what files are new
or which ones were changed and modifies the local
database. All these functions are totally transparent
to the user. The user will only select the shader she
wants to upload or download without worrying
about which one of these functions is being called.
ShaderBase can work offline after the first clone, but
an Internet connection is required to upload a shader
to the remote repository, to pull any changes, or
download new shaders.

After cloning and receiving the data stored in
ShaderDB, the tool gathers all the information of the
indexing text files saved for each shader, indexes the
documents and creates a main index. Each
ShaderBase copy will have an independent index
allowing the user to index their local shaders without
the need of sharing them. Each time a new shader is
added or if ShaderBase is updated the index is going
to be remade.

ShaderBase offers search functionality based on
Lucene, a Java scalable Information Retrieval (IR)
library (McCandless and Hatcher, 2010). The design
of the Lucene-based search functionality can be
appreciated in Figure 1.

ShaderBase enables the following features in
Lucene:
• Indexing with Standard Analyser. Just will index

the indexing text file for each shader

• Search by Phrase Relevance. The search can be

IVAPP 2016 - International Conference on Information Visualization Theory and Applications

194

fuzzy or weighted, but these options are disabled
until the number of the shaders increases.

The user only needs to add some words or a simple
phrase and ShaderBase will check which ones of
these words are indexed and will provide a result
with the shaders that have them in the indexing file.
This result will only show the shaders that could be
of the interest to the user. After searching and
downloading the shader into Processing the user
only needs to run the automatically generated sketch
holding this shader.

3.2 ShaderBase User Interface

The user interface in ShaderBase is divided in two
separate areas, Download and Upload, which can be
selected with the tabs located in the top left region of
the main window.

When the user selects a shader from the list of
available shaders, a preview image and a short
textual description will be displayed to help the user
deciding if that is the shader she wants. If the shader
is selected, ShaderBase will send it directly into
Processing’s editor, using all the information stored
in Git to build a new sketch that the user can run
immediately. If a sketch is already open, then
ShaderBase creates a new sketch with all the
required code and files. Again, all of these
operations take place transparently.

The tool provides a search function as explained
in Section 3.1. All the results are going to be
reflected in the list showing only the shaders
matching the search query. The upload process
requires that Processing sketch holds a valid shader.
Otherwise, ShaderBase will not allow uploading any
files to avoid the database being polluted with non-
shader code. When a user uploads a shader,
ShaderBase will ask to either share it with other
users, or to save it in the local repository. When the
latter option is selected, the shader is not sent to the
remote Git repository, and is only indexed for the
search in the local machine. In order to upload a
shader the user must fill the small template shown in
the section 3.1. The main purpose of the template is
to create an index file to ensure that the shader can
be found through the search queries.

Shaders can also be deleted from ShaderBase’s
interface; but this is allowed only if the shader is
saved in the local repository. The tool does not allow
deleting shaders indexed in ShaderDB. However the
user can modified those shaders, simply by
uploading them using the same name. ShaderBase
does not show the commit history of a shader stored
in ShaderDB, we considered this feature not

important for beginner users, while advanced users
will be able to access the commit history of shader
directly through GitHub.

4 CONCLUSIONS

Processing allows artists and designers working with
code to use GLSL shaders in a simpler way. It
makes the learning process more accessible to users
without formal training in CG, who can also benefit
from Processing’s portability and absence of extra
library configuration.

The availability of shaders provided by
ShaderBase in Processing should greatly enhance
the capabilities of the language, allowing for GPU-
accelerated rendering of complex models and
scenes. GLSL shaders already written for other
platforms and/or frameworks can be adapted to work
in Processing with minor code changes, thus helping
to share resources and knowledge between coding
communities. Furthermore ShaderBase will allow
sharing shader code and expertise over the web,
thanks to the widespread adoption of Processing as a
teaching and production tool in digital arts and
design. ShaderBase has recently released to the
community (Gómez, 2015a), with an initial selection
of shaders .(Gómez, 2015b)

From a technical standpoint, ShaderBase inherits
all the advantages of Git, which guarantees a robust
transfer and ensures that the information is not going
to be corrupted easily. Also, the tool does most all
the work in the local machine and thanks to the
search queries it allows users to find shaders very
quickly. All the shaders indexed in the machine can
be loaded directly into Processing’s editor. Sharing
new shader rendering effects does not involve any
extra work from the user.

Finally, ShaderBase provides access to shaders
created by a growing community of creative coders,
artists and designers. These shaders could be used
immediately from within Processing without any
previous setup or additional changes in the code. In
particular, this would enable users without previous
GLSL knowledge to start exploring the possibilities
offered by shader programming and Processing’s
shader API.

ACKNOWLEDGEMENTS

The authors would like to thank the contributions
over the years from all the members of the

ShaderBase: A Processing Tool for Shaders in Computational Arts and Design

195

Processing community.

REFERENCES

Cabello, R. 2015. GLSL Sandbox [Online]. Available:
http://glslsandbox.com/

Chacon, S. & Straub, B. 2014. Pro Git, Apress
Distributed to the book trade worldwide by Springer

Science+Business Media New York.
Colubri, A. PShader tutorial [Online]. Available:

https://www.processing.org/tutorials/pshader/
Foster, E. C. & Godbole, S. 2014. Database systems: a

pragmatic approach, Apress
Distributed to the book trade worldwide by Springer

Science and Business Media.
Geeks3D. 2015. Shader Library [Online]. Available:

http://www.geeks3d.com/shader-library/
Gómez, A. F. 2015a. ShaderBase [Online]. Available:

https://github.com/remixlab/shaderbase
Gómez, A. F. 2015b. ShaderDB [Online]. Available:

https://github.com/remixlab/shaderdb
Gómez, A. F., Colubri, A. & Charalambos, J. P. Shader

Programming for Computational Arts and Design: A
Comparison between Creative Coding Frameworks.
11th International Conference on Computer Graphics
Theory and Applications, 2016 Rome.

Mccandless, M. & Hatcher, E. 2010. Lucene in action,
Stamford, Conn., Manning Pub.

NVIDIA. 2008. NVIDIA shader library [Online].
Available:
http://developer.download.nvidia.com/shaderlibrary/w
ebpages/shader_library.html

Orr, G. 2009. Computational thinking through
programming and algorithmic art. SIGGRAPH 2009:
Talks. New Orleans, Louisiana: ACM.

Processing Foundation I. Processing project home page
[Online]. Available: https://processing.org/

Processing Foundation Ii. Processing Reference [Online].
Available: https://processing.org/reference/

Quilez, I. 2015. ShaderToy [Online]. Available:
http://shadertoy.com/

Reas, C. & Fry, B. 2014. Processing: A Programming
Handbook for Visual Designers and Artists (2nd
Edition), Cambridge.

Tavares, G. 2015. VertexShaderArt [Online]. Available:
http://www.vertexshaderart.com/

IVAPP 2016 - International Conference on Information Visualization Theory and Applications

196

