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Abstract: We propose two different wearable wireless sensing systems based on Inertial Measurement Units for the 
home monitoring of specific symptoms of the Parkinson’s disease. In one configuration just one sensor is 
inserted in a headset, in the other configuration two sensors are positioned on the patient’s shins. They 
recognize and classify noticeable motion disorders potentially dangerous for patients and give an audio 
feedback. The systems use dedicated algorithms for real time processing of the raw signals from 
accelerometers and gyroscopes, one of which is based on an artificial neural network and another on a time-
based analysis. The headset system detects satisfactorily a wide class of motion irregularities including the 
trunk disorders, but is poorly reliable on Parkinson’s patients. The other system with sensors on the shins 
provides an early detection of the freezing of gait with excellent performance in terms of sensitivity and 
precision, and timely provides a rhythmic auditory stimulation to the patient for releasing the involuntary 
block state. 

1 INTRODUCTION 

A wide variety of movement disorders and gait 
irregularities are typical  symptoms of the Parkinson 
Disease (PD) (Nieuwboer et al., 2001).  Among 
others, the freezing of gait (FOG) is a really disabling 
one. FOG is paroxysmal block of movements, which 
takes place in an advanced stage of the PD if the 
patient is not properly covered by the therapy. During 
the FOG, patients refer that their feet are “stuck to the 
ground” (Spildooren et al, 2010). In this situation, the 
patients make attempts to make a step, oscillating and 
thrusting forward the trunk, which can cause 
catastrophic events as falls (Bloem et al, 2004). Often, 
the FOG is anticipated by a progressive step 
shortening (pre-freezing state) (J. Spildooren et al., 
2010), after which the patient stops completely. It has 
been shown that a rhythmic auditory stimulation 
(RAS) can lead the patients out of the FOG state (P. 
Arias and Cudeiro, 2010). The possibility to provide 
a RAS timely at the onset of the symptom or in the 
pre-freezing state would avoid the undesired 

consequences of the block. During the last few years, 
several different systems for the automatic detection 
of the FOG have been proposed. These are based on 
the classification of electrical signals coming from 
inertial sensors properly positioned on the patient 
body (Lorenzi et al., 2015), (Mazilu et al., 2014), ( 
Bachlin et al., 2010), (Moore et al., 2013), (B. 
Sijobert et al., 2014), (Mazilu et al., 2013) (Cola et 
al., 2015), (Atallah et al., 2014). In our work, we 
propose the realization of two types of wearable 
wireless sensing systems based on MEMS 
accelerometers and gyroscopes, able to recognize in 
real time specific kinetic features associated to 
motion disorders typical of (but not limited to) the PD 
and eventually give an auditory stimulation to the 
patient to release the involuntary block. They have 
been designed to be used at home or outdoor, during 
the daily patient life. One system has the sensor in a 
headset and uses an artificial neural network (ANN) 
for the recognition of the motion features as regular 
steps, short steps, gait blocks, trunk oscillations. 
Another headset system recently proposed in 
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literature (L. Atallah et al., 2014) uses only 
accelerometers just to detect the gait asymmetries 
without making any recognition of specific gait 
features (which is the topic of our system). The other 
system proposed here has two sensors on the shins 
and uses a time-based algorithm for the recognition.  

Compared to other systems, the headset has the 
advantage that it is composed by a single sensor 
integrated in the headphone. This makes the system 
compact and energy efficient since no wired/wireless 
connection is required to give the audio-feedback. On 
the other hand, the headset has the disadvantage that 
the neck joint mixes signals from the amount of 
postural problems and irregular movements typical of 
the Parkinson disease, which makes the detected 
traces extremely "noisy" and confused (as 
experimentally proved).  

The second system proposed here requires an 
additional device for the audio feedback, but the two 
sensors on the shins guarantee the best performance 
presented in literature to date in terms of sensitivity, 
specificity, precision and accuracy. It has been tested 
on a population of PD patients with excellent results. 

The board used in the two systems is a prototype 
called neMEMSi (D.Comotti et al., 2014) whose size 
is 25x30x4 mm3 (with battery, see Fig. 1a).  

 
Figure 1: a) A picture of the NeMEMSi board. b) sketch of 
the reference framework of the headset sensor. 

The sensor unit LSM9DS0 integrates a ±16 g (g-
force) 3D accelerometer, a ±12 Gauss 3D 
magnetometer and a ±2000 dps 3D gyroscope. 
Bluetooth communication is supported. The board 
integrates an ultralow-power 32 bit microcontroller 
(MCU) by STMicroelectronics (STM32L1) with 33.3 
DMIPS peak computation capability and very low 
power consumption (down to 233 uA/MHz), Flash 
memory 256 KB, SRAM 16 KB, EEPROM 4 KB.  
Thanks to the Cortex™ M3 architecture and the 32 
MHz clock frequency, this MCU is optimized for 
advanced and low-power embedded computations. 
Actually, until now we performed the measurements 
on patients using an external station (a pc) for the 
calculations, since the porting on board requires 
disclosure of the MCU firmware. However, we are 

fully confident that the excellent capabilities of the 
MCU guarantee the same system performance since 
they are redundant respect to the system 
requirements. In fact, the same algorithms have been 
already implemented in an Arduino platform (16 bit 
MCU ATmega 328P, Flash memory 32KB, SRAM 
2KB, EEPROM 1KB, Clock Speed 16MHz, MIPS 
16) which is largely less performing of the STM32L1.  

2 THE HEADSET SENSING 
SYSTEM 

2.1 The Soft Operation with an 
Artificial Neural Network 

This system is composed of a single sensor inserted 
in a headset. The reference framework is depicted in 
Fig. 1b. The y-axis represents the vertical direction, 
the x-axis represents the direction of the walk. The 
acceleration along the x direction (Ax, blue) and 
along the y direction (Ay, red) in the two states are 
drawn in Fig.2. During the walk, the two 
accelerations have an oscillatory behaviour, in the 
stop state Ay is around 10 m/s2 and Ax is around 0. 

 
Figure 2: Typical curves of raw data of Ay (upper curve) 
and Ax (lower curve) during a regular walk and in the stop 
state. 

In the case of Fig.2, the person was first in a stop 
state, then he started walking and made 10 steps. In 
the walk state, 10 peaks of acceleration can be clearly 
distinguished. We need to implement an algorithm 
able to recognize the movement disorders typical of 
PD: block, the regular steps, the irregular and short 
steps, the trunk oscillations. Hereafter, the results 
obtained with an artificial neural network (ANN) will 
be discussed, since other algorithms revealed less 
satisfactorily. We used an ANN with two layers (the 
hidden and the output layer).  The network consists of 
10 neurons, with a sigmoid weight function, 
connected in a feedforward topology. We used the 
80% of the data for the training with a scaled 
conjugate gradient backpropagation algorithm 
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already implemented in Matlab (C.M. Bishop et al., 
1995), (T. Chau, 2001). The remaining 20% of the 
data was used to validate the algorithm. The cross 
entropy is chosen as performance function (D. Kline 
and V. Berardi, 2005). Ten epochs are sufficient to 
train the ANN in any studied case (discussed in the 
following), which indicates that the algorithm is very 
light and fast.  

 
Figure 3: Flow diagram of the DTW-ANN training 
procedure. 

Training:  The flow diagram of training is 
reported in Fig.3. First of all, we choose the Ay signal 
containing a known number of reference patterns with 
a known size relative to steps, and we pick out a 
reference pattern from it. An example of a step 
reference pattern is shown in Fig.4a (selected in 
region II of Fig.2). 

 
Figure 4: (a) Reference pattern associated to a regular step. 
(b) Reference pattern associated to a short step. 

Apart from the amplitude, the reference pattern is 
characterized by the size (number of frames) related 
to the step time. The known signal is partitioned in 
sub-sequences having the same size of the reference 
pattern and the reference pattern is compared with the 
sub-sequences. To improve flexibility, the Dynamic 
Time Warping (DTW) technique is used, since it 
allows comparing similar patterns rather than just one 
specific pattern in the time subsequence (K.Wang et 
al., 1997). DTW is a nonlinear time normalization 
technique based on dynamic programming. Given 
two time series of different duration, a cost function 
can be calculated (E. Keogh and C. A. 
Ratanamahatana, 2005). A threshold of the cost 
function is set, which determines the degree of 
similarity between the reference signal and the 
specific subsequence. An example of the cost 
function of the DTW is shown in Fig.5. When the 
DTW recognizes the reference pattern in a sub-
sequence then the corresponding ANN input is 
positive. On the contrary, if the known steps are not 
all recognized, the size of the reference pattern and/or 
the threshold of the cost function are changed (DTW 
optimization) and the DTW is run again. 

 
Figure 5: Cost function of the DTW and optimized 
threshold. 

2.2 Experimental Results 

The ANN is now tested using unknown signals. First, 
we monitored four young persons (all male) with 
temporary orthopedics problems in deambulation 
(defined “healthy”, in comparison with PD patients) 
who made the following exercise: stop, walk a few 
steps, turning, walk back, stop. The tests regarded the 
detection of regular steps, the irregular gait with step 
shortening (during turning), the trunk fluctuations. At 
a second stage, we monitored PD patients who made 
exactly the same exercise. 

2.2.1 First Test on Healthy Persons: Regular 
Steps and Block 

The raw Ay signal of an unknown walk is plotted in 
Fig.6 (upper red curve). Four intervals can be 
distinguished: interval I is intuitively associated to a 
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stop state (the Ay value keeps constant at 1000 mg), 
intervals II and IV are clearly associated to a periodic 
movement, interval III refers to an irregular gait with 
short steps (while turning). The ANN was trained to 
recognize the stop state. The reference signal in this 
case was selected in interval I (it was an almost 
straight line, not shown for brevity) and the result is 
the lower dotted (ciano) curve. As expected, the ANN 
output is 1 in the I interval, is 0 during intervals II and 
III and assumes values between 0 and 1in the IV state, 
as whether short steps were present. The presence of 
regular steps was investigated using the reference 
pattern of Fig.4a. The outputs of the ANN in this case 
are shown in Fig.6 with the lower (blue) curve (ANN 
out-puts close to 1). As one can see, nine steps were 
recognized in region II and nine steps in region IV. 
No regular steps were identified in region III. We can 
conclude that interval III was recognized as a not 
walk state and a not stop state. The irregular steps 
need further investigation, and are the next focus. 

 
Figure 6: Raw Ay signal of the first unknown test signal 
(upper red curve) composed by stop state and walk state. 
ANN output associated to stop (ciano) and to walk (blue). 

2.2.2 Second Test on Healthy Persons: Short 
Steps 

The second unknown Ay signal is shown in Fig.7 
(upper red curve). In this case, the exercise was 
focused on the step shortening. Here, the ANN had to 
recognize short steps and distinguish them from 
regular ones. Fig.4a, outlines different shapes, 
amplitudes, sizes). Therefore, in this experiment the 
ANN was trained using a reference pattern selected in 
region III. The new reference pattern is displayed in 
Fig.4b with arbitrary origin. The ANN outputs are 
shown in Fig.7. Although steps were irregular and 
featured variable length, the ANN recognized the 
short steps in interval III, where just one of the fifteen 
was regarded as uncertain (step # 10). Furthermore, a 
couple of irregular steps were also detected, when 
passing from region I to region II and from region II 
to region III.  

 
Figure 7: Raw Ay signal of the second unknown test signal 
(upper curve) composed by stop, walk state and irregular 
short steps. ANN output associated to the irregular short 
steps (lower curve). 

2.2.3 Third Test on Healthy Persons: Trunk 
Oscillations 

In this test, the ANN had to recognize trunk 
fluctuations in the x-y plane (referring to Fig.1b). In 
this experiment, legs were motionless and only the 
trunk oscillated pivoting on the pelvis. This situations 
is of particular interest because during a freezing of 
gait PD patients feel that their feet are stuck to the 
ground and they try repeatedly to make a step 
thrusting out and overbalancing. This is clearly 
associated to an increased risk of fall. In this case, the 
fact that the sensor is positioned on the head 
guarantees the maxi-mum sensitivity to the 
movement. In this experiment, the angle respect to the 
vertical axis varied in the range ±20 degrees. Again, 
the Ay raw signal was analysed and the curve is 
shown in Fig.8 (upper red curve). As expected, the 
trunk oscillations are very well characterized (region 
III). Regions I and II are associated, respectively, to a 
stop state and a walk state. The ANN was trained to 
recognize trunk fluctuations using a reference pattern 
selected in region III. It is shown in the inset. The 
ANN outputs are displayed in Fig.8 (lower blue 
curve). Recognition was excellent and all the trunk 
oscillations yielded ANN = 1.  

 
Figure 8: Raw Ay signal of the third unknown test signal 
(upper curve) composed by stop state, walk state and trunk 
oscillations. ANN output associated to the trunk oscillations 
(lower curve). 
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2.2.4 Test on PD Patients 

All the results of the tests discussed above revealed 
that the headset system recognizes successfully the 
gait features and the trunk (and head) movements of 
healthy persons with temporary orthopedic problems.  

Then, we started monitoring PD patients, but we 
limited to just a few (male, over 70) since results were 
not satisfactorily. Patients were asked to make the 
exercise described before. Tests were registered by a 
camera and supervised by doctors in order to establish 
the exact starting and ending time of the eventual 
FOG event. As an example, Fig.9 reports results 
relative to one of the PD patients experiencing a FOG 
during the test. The patient made four regular steps 
and a fifth short step, very close to the previous one. 
This fifth step defines an incipient FOG (pre-freezing 
state). Then the FOG event occurred, during which 
the patient made some irregular movements of the 
whole body, without making steps. The five steps are 
outlined with arrows on the Ay curve sketched in the 
figure. Looking at the ANN output, the first three 
steps are correctly detected, step 4 and step 5 are false 
negative, whereas a false positive is present during 
the FOG state, probably confusing a large movement 
of the body with a step. We can conclude that the 
headset is not similarly effective on PD patients as on 
healthy persons. This is due to the fact that PD 
patients feature a great variety of postural problems 
and irregular movements in many sections of the 
body, all mixed together. The headset device suffers 
from the presence of a joint (the neck) which can mix 
(or hide part of) the signals, making the information 
extremely "noisy" and confused, thus introducing 
false positive and false negative outputs. 

 
Figure 9: Raw Ay signal of the test signal taken on a PD 
patient (upper curve) composed by four regular steps, one 
short step close to the forth one, a FOG during which the 
body makes oscillations. The ANN reveals false negative 
and false positive outputs. 

3 THE SENSING SYSTEM ON 
THE SHINS 

In order to monitor movement disorders specifically 
in PD patients we designed another system with 
sensors positioned on the shins. In this case, the 
recognition algorithm is based on a time domain 
analysis of the sensor signals. The raw signals of 
accelerometers and gyroscopes are fused together 
through the attitude and heading reference system 
(AHRS) and the Madgwick's algorithm (β=0.15) 
(Madgwick et al., 2011). The data reading frequency 
from the sensor is 60Hz, which allows a correct 
sampling of the signal during FOG events since the 
relevant spectrum of FOG is 3 – 10 Hz. A quaternion 
based representation of the limb orientation and 
position is calculated. The angles αright and αleft 
between the vertical axis and the right/left shin are 
sketched in Fig.10. 

 
Figure 10: Angle between the vertical axis and the shin. 

The angular velocities ωright, ωleft obtained after 
angle derivation are used as the input for the FOG 
detection. A new algorithm was developed which 
calculates the low-pass of the angular velocities:  

kright = lowpass(|ωright|) (1)
 

kLeft = lowpass(|ωLeft|) (2)
and introduces an index K = kright + kleft. The 
algorithm in eqs.(1) and (2) is an improvement of a 
very recent algorithm proposed in literature (Y. Kwon 
et al., 2014), which uses the root mean square of the 
accelerometer signal of a single sensor and does not 
perform fusion with the gyroscope signal. Actually, 
thanks to the fusion of gyroscope and accelerometer 
signals, our algorithm allows to achieve a higher 
precision. This is paid in terms of the number of 
calculations, but the low pass filtering in the 
equations above needs a lower number and a lower 
rate of accesses to the microcontroller memory,  
respect to the root mean square method. As a matter 
of fact, we tested both algorithms and the proposed 
one exhibited better performance in terms of 
precision, with comparable calculation time.  

A population of sixteen patients of different age 
and sex, at different stages of the disease was asked 
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to wear the two sensors and make an exercise several 
times. The population is described in Table I. The 
exercise was: walking some steps, passing through an 
open door, turning and going back.  

Table 1: Sex, age, disease stage of monitored patients. 

male/female under/over 65 early/advanced 
9/7 5/11 6/10 

FOG events occurred frequently during the 
exercises, especially when passing through the open 
door and during turning. In order to classify properly 
the states, a preliminary calibration of the system was 
performed.  To this aim, the whole exercise was 
filmed with a camera and the sensor signals were 
recorded.  The films were studied by doctors, who 
indicated the exact timing of the freezing events. 
Then, the calculated K curves were compared with 
the clinical observations by the doctors. This allowed 
defining three threshold values of K (T1-3) which 
classify the four states: regular gait (K>T3), pre-post 
freezing-state (T3>K >T2), involuntary freezing state 
(T2>K>T1) and voluntary rest state (K<T1). It is 
worth noticing that the values of T1-3 are the same 
for all the patients. From clinical side, distinguishing 
the involuntary freezing state from the rest state is 
crucial, and, fortunately, it relatively simple using 
inertial sensors since in the involuntary freezing state 
the muscle activity is always present and gives rise to 
lots of small movements which are clearly detected 
by the sensors. An example of α, ω and K is shown 
in the diagrams of Fig.11. Clinical report by the 
doctor about the exact FOG timing is sketched in the 
bottom diagram. The comparison between the K 
curve and the clinical reports allowed defining the T 
thresholds and the four classified states. In the 
example of Fig.11, a few FOG and pre-FOG events 
were identified by both doctors and the system. In one 
case (time=23-28s), the system distinguished 
between pre-FOG and FOG states, whereas doctors 
reported just a FOG in the whole time interval. Values 
of T1-3 remained the same along all the measurements. 
Subsequent cross checks outlined an excellent 
agreement between the doctors reports and the 
automatic recognition of FOG performed by our 
system. An extremely low number of errors (false 
positive or false negative) were found. The particular 
algorithm implemented allowed to get the best 
performance published to date in terms of sensitivity, 
precision, accuracy and specificity. The average 
results on about two hours recording time and sixteen 
patients are shown in Table 2. As a comparison with 
the state of art, another system using inertial sensors 
positioned on the ankles featured  a sensitivity of 77 

% and a specificity of 86.5 % (S. Mazilu et al., 2013). 
This result was obtained on a population of fourteen 
PD patients. 

 
Figure 11: An example of angle and angular velocity 
measured by the sensor on the shin during the exercise. The 
calculate K index is also displayed. The bottom diagram 
reports the clinical observation of the FOG events timing. 

Table 2: Performance of the system. 

Sensitivity Specificity Precision Accuracy
94.5% 96.7% 93.8% 95.6% 

4 CONCLUSIONS 

In this paper we proposed the realization of two 
wearable wireless sensing systems based on silicon 
integrated micro-electro-mechanical inertial sensors 
able to recognize in real time specific kinetic features 
associated to human motion disorders. The system is 
designed specifically for the Parkinson’s disease and 
gives an auditory stimulation to the patient to release 
block states in the freezing of gait. One system has 
the sensors in a headset, while the other one has 
sensors on the shins. They can be used at home or 
outdoor, during the daily activity of the patient. The 
hardware used for the two solutions is the same and 
uses the same integrated sensors. On the contrary, 
different algorithms were implemented in the two 
cases, accounting for the distinct peculiarities of the 
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two solutions. In the case of the headset, a number of 
different algorithms were used in order to improve 
recognition of the gait features. In the paper, we 
discussed results regarding the recognition of the 
block state, regular and irregular steps, trunk 
oscillations obtained with an artificial neural network. 
For the system with sensors on the shins we used an 
algorithm filtering and processing in real time the 
angular velocities of the two legs. This gives excellent 
recognition of the irregularities of each step and 
detects even barely perceptible tremors in all the 
monitored PD patients, allowing distinguishing 
doubtless between the voluntary stop state and the 
involuntary block due to the FOG. Further 
optimization and simplification of the detection 
algorithm can be achieved by better manipulating the 
quaternions representation of the limbs. 

The headset has advantages in terms emphasized 
sensitivity to trunk oscillations, easy wearability and 
direct auditory feedback. This implies an excellent 
detection of specific typologies of motion disorders, 
and makes the system compact and energy efficient 
since gives the audio-feedback without any 
wired/wireless connection. Unfortunately, PD 
patients feature a great variety of postural problems 
and irregular movements in all the sections of the 
body, and the system suffers from the presence of a 
joint (the neck) which can mix (or hide part of) the 
signals, making the information extremely "noisy" 
and confused, thus introducing false positive and 
false negative outputs. For this reason, the headset 
can be better employed for other types of motion 
disorders, as in the case of temporary orthopedics 
ones. 

The other device requires an additional device in 
the ear for the audio-feedback, but guarantees the best 
performances presented in literature to date in terms 
of sensitivity, specificity, precision and accuracy in 
the detection of the FOG events. The system was 
validated on a population of sixteen patients of 
different age, sex and stage of the disease.  
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