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Abstract: In this article, a different class of function called(K ×Q)-F-type I has been introduced. Further, we have
formulated a problem over cones and appropriate duality results have been established taking the concerned
functions to be(K×Q)- F-type I. The results which we have put forward in the paper generalizes some of the
known results appeared in the literature.

1 INTRODUCTION

The mathematical programming problems involving
ratio of two functions in the objective function is
called fractional programming problems. Many types
of optimization problems involves this fascinating
subject. Fractional programming problem emerges in
several types of optimization problems (as for exam-
ple, portfolio selection, production, information the-
ory and numerous decision making problems in man-
agement science). It has also been extensively used in
business and economics situation. Further, these type
of problems are also useful in engineering and eco-
nomics where it is often used to maximize a fractional
function for measuring the efficiency or productivity
of a system. (Bector and Chandra, 1987), (Bector
et al., 1993), (Schaible, 1995) etc. have given some
applications of fractional programming problems.

Duality theory happens to be the central concept
in optimization. This theory aids us to experience and
develop new algorithms (numerical algorithms) be-
cause it gives us appropriate stopping rules for a pair
of primal-dual problems. (Dorn, 1960) considered
a convex minimization problem of a differentiable
function subject to some linear constraints and studied
its duality relations. Over the past few years, many re-
searchers generalized these results to the case of non-
differentiable convex problem (Schechter, 1979) and
differentiable convex problem (Hanson, 1981). As-
suming the functions to be invex, (Hanson, 1981) es-
tablished that KKT conditions are sufficient for op-
timality. Two different types of functions (namely
Type I and Type II) were first presented by (Hanson

and Mond, 1987) for a scalar optimization problem.
(Rueda and Hanson, 1988) extended these functions
to pseudo-Type I and quasi-Type I.

The Type I function for a single objective was
extended to a MOPP (multiobjective programming
problem) by (Kaul et al., 1994), where they defined
the Type I, its different generalizations, thus estab-
lished duality relations for the Wolfe and the Mond-
Weir type model. (Kuk and Tanino, 2003) consid-
ered nonsmooth programming problem and derived
the duality results considering the functions to be gen-
eralized Type I. On the other hand, (Suneja et al.,
2008) presented(F,ρ,σ)-type I functions for the case
of higher order. Further, they considered two dual
models (one Mond-Weir and the other Schaible type
both are in higher order case) and obtained their corre-
sponding dual relations (for multiobjective fractional
programs in nondifferentiable case).

Recently, fractional programming duality has be-
come an interesting topic of research. For a con-
vex nondifferentiable fractional problem, (Bector
et al., 1993) established some optimality conditions
(namely Fritz John and KKT necessary and suffi-
cient optimality criteria) and proved some duality re-
sults. Considering a vectorial optimization problem
over cones, (Bhatia, 2012) discussed the sufficient op-
timality conditions and proved some results (duality
theorems) using cone convex and its generalizations
for the case of higher order. (Slimani and Mishra,
2014) introduced a nonlinear multiple objective frac-
tional programming with inequality constraints and
proved duality results for a Mond-Weir type model
using semilocallyV-type I-preinvex functions.

Debnath, I. and Gupta, S.
On Duality with Support Functions for a Multiobjective Fractional Programming Problem.
DOI: 10.5220/0005666001150121
In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems (ICORES 2016), pages 115-121
ISBN: 978-989-758-171-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

115



(Kim and Lee, 2009) introduced the nondiffer-
entiable multiobjective problem involving cone con-
straints and hence studied their duality relations using
higher order invexity assumptions. On the other hand,
considering the same problem as in (Kim and Lee,
2009), (Ahmad, 2012) formulated a dual program
(unified and higher order) and discussed some re-
sults in duality (under higher order generalized type-
I functions). In recent times, (Debnath et al., 2015)
constructed a pair of higher order Wolfe type multi-
objective nondifferentiable symmetric dual program
over arbitrary cones and studied duality relations un-
der higher-orderK-F convexity assumption.

The paper is arranged as we describe. In section
2, a class of(K ×Q)-F-type I function has been put
forward and further some definitions and terminolo-
gies have been given. In the section 3, we have for-
mulated a dual model (Mond-Weir model) for a frac-
tional problem over arbitrary cones (for nondifferen-
tiable multiobjective case) and proved duality rela-
tions considering the concerned functions as higher
order(K ×Q)-F-type I. Section 3 contains the con-
clusion.

2 SOME BASIC DEFINITIONS

Consider the following MOPP (multiobjective pro-
gramming problem):

(VP) K-minimizeφ(x)

subject to−ψ(x) ∈ Q,
x∈ X ⊆ Rn,

whereX ⊂ Rn be open andφ : X → Rk, ψ : X → Rm

defines vector valued differentiable functions,
K ⊆ Rk and Q ⊆ Rm denotes the closed con-
vex pointed cones having non-null interiors. Let
X0 = {x∈ X : −ψ(x) ∈ Q} denotes the feasible set.

Definition 2.1 (Agarwal et al., 2010). A point
x̄ ∈ X0 is a weak efficient solution of(VP) if there
exists nox∈ X0 such that

φ(x̄)−φ(x) ∈ intK.

Definition 2.2 (Agarwal et al., 2010). A point x̄∈ X0

is an efficient solution of(VP) if there exists nox∈X0

such that
φ(x̄)−φ(x) ∈ K\{0}.

Definition 2.3 (Gupta et al., 2012). The positive dual

coneK∗ of K is defined by

K∗ = {y : xTy≥ 0, for all x∈ K}.

Definition 2.4. For all (x,u) ∈ X ×X, a functional
H : X×X×Rn → R is called sublinear in respect with
the third component, if

(i) H(x,u;b1+b2) ≤ H(x,u;b1)+H(x,u;b2) for all
b1,b2 ∈ Rn,

(ii) H(x,u;βb) = βH(x,u;b), for all β ∈ R+ and for
all b∈ Rn.

Clearly,H(x,u;0) = 0.

Definition 2.5. Let F : X ×X ×Rn → R be called a
functional which is sublinear with respect to the third
variable. Also, letH : X×Rn → Rk, G : X×Rn → Rm

be differentiable functions. Then the function(φ,ψ)
will be called higher-order(K×Q)-F type I atu∈ Rn

in respect with the functionsH and G, if for each
x∈ X0, pi , q j ∈ Rn, (i = 1,2, ...,k, j = 1,2, ...,m), we
have
(

φ1(x)− φ1(u)− F(x,u;∇xφ1(u) + ∇p1H1(u, p1))−
H1(u, p1) + pT

1 [∇p1H1(u, p1)], ...,φk(x) − φk(u) −
F(x,u;∇xφk(u) + ∇pkHk(u, pk)) − Hk(u, pk) +

pT
k [∇pkHk(u, pk)]

)
∈ K.

and
(

− ψ1(u) − F(x,u;∇xψ1(u) + ∇q1G1(u,q1)) −
G1(u,q1) + qT

1 ∇q1G1(u,q1), ...,−ψm(u) −
F(x,u;∇xψm(u) + ∇qmGm(u,qm)) − Gm(u,qm) +

qT
m∇qmGm(u,qm)

)
∈ Q.

Definition 2.6 (Gupta et al., 2012). Let ϕ be a
convex set inRn which is also compact. The support
function ofϕ is given as

τ(x|ϕ) = max{xTy : y∈ ϕ}.

The subdifferentiable ofτ(x|ϕ) is defined by

∂τ(x|ϕ) = {z∈ ϕ : zTx= τ(x|ϕ)}.

We now present the following problem (KP)
(multiobjective fractional programming problem)
over arbitrary cones containing support functions.

(KP) K-minimize
[ φ1(x)+ τ(x|C1)

ψ1(x)− τ(x|D1)
, ...,

φk(x)+ τ(x|Ck)

ψk(x)− τ(x|Dk)

]

subject to

−
[
ϕ j(x)+ τ(x|M j)

]
∈ Q, j = 1,2, ...,m.
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where

φ : Rn → Rk, ψ : Rn → Rk and ϕ : Rn → Rm are
continuously differentiable functions. Assume that
φi(.)+ τ(.|Ci)≥ 0 andψi(.)− τ(.|Di)> 0. Ci , Di and
M j denotes the compact convex sets inRn and their
respective support functions are denoted byτ(x|Ci),
τ(x|Di) andτ(x|M j ).

Throughout the paper, the following notations
have been used:

P(.)+ (.)Tz
Q(.)− (.)Tv

=
{ φ1(.)+ (.)Tz1

ψ1(.)− (.)Tv1
,

φ2(.)+ (.)Tz2

ψ2(.)− (.)Tv2
, ...,

φk(.)+ (.)Tzk

ψk(.)− (.)Tvk

}

R(.)+ (.)Tw=
{

ϕ1(.)+ (.)Tw1,ϕ2(.)+ (.)Tw2, ...,

ϕm(.)+ (.)Twm

}
.

H =
(

H1(u, p1),H2(u, p2), ...,Hk(u, pk)
)

.

G=
(

G1(u,q1),G2(u,q2), ...,Gk(u,qm)
)

.

In the following section, we associate dual model
for the primal problem (KP) and establish duality
relations between them.

3 MOND-WEIR TYPE DUAL
MODEL

Consider the following Mond-Weir type higher order
dual program of the problem (KP):

(MPD) K-maximize

[ φ1(u)+uTz1

ψ1(u)−uTv1
, ...,

φk(u)+uTzk

ψk(u)−uTvk

]

subject to
k

∑
i=1

λi

[
∇

φi(u)+uTzi

ψi(u)−uTvi

]
+

m

∑
j=1

µj

[
∇(ϕ j(u)+uTwj)

]
+

k

∑
i=1

λi∇pi Hi(u, pi)+
m

∑
j=1

µj∇q j G j(u,q j) = 0. (1)

m

∑
j=1

µj

[
(ϕ j(u)+uTw j)+Gj (u,qj)−qT

j ∇q j Gj (u,qj)
]
≥ 0.

(2)
k

∑
i=1

λi

[
Hi(u, pi)− pT

i ∇pi Hi(u, pi)
]
≥ 0. (3)

zi ∈ Ci , vi ∈ Di , wj ∈ M j , (i = 1,2, ...,k,
j = 1,2, ...,m),

λ ∈ intK∗, µ∈ intQ∗, (λ,µ) 6= (0,0).

Remark 3.1. If we considerK = Rk
+ andQ = Rm

+,
the above discussed Mond-Weir model reduces to the
model studied in (Suneja et al., 2008).

Next, we will prove duality results between (KP) and
(MPD).

Theorem 3.1 (Weak Duality Theorem). Con-
siderx be a member of the feasible set for (KP) and
(u,v,w,λ,µ,z, p,q) belongs to the feasible set for
(MPD). Suppose that

(i)
[ P(.)+ (.)Tz

Q(.)− (.)Tv
,R(.)+ (.)Tw

]
is higher order(K ×

Q)-F-type I atu in respect with functionsH and
G, whereH : X×Rn → Rk andG : X×Rn → Rm

are differentiable functions,

(ii) Rk
+ ⊆ K andRm

+ ⊆ Q.
Then

( φ1(u)+uTz1

ψ1(u)−uTv1
, ...,

φk(u)+uTzk

ψk(u)−uTvk

)

−
( φ1(x)+ τ(x|C1)

ψ1(x)− τ(x|D1)
, ...,

φk(x)+ τ(x|Ck)

ψk(x)− τ(x|Dk)

)
6∈ K\{0}.

Proof. We will prove the result by contradic-
tion. Suppose,

( φ1(u)+uTz1

ψ1(u)−uTv1
, ...,

φk(u)+uTzk

ψk(u)−uTvk

)

−
( φ1(x)+ τ(x|C1)

ψ1(x)− τ(x|D1)
, ...,

φk(x)+ τ(x|Ck)

ψk(x)− τ(x|Dk)

)
∈ K\{0}.

Sinceλ ∈ intK∗, we have
k

∑
i=1

λi

[( φi(u)+uTzi

ψi(v)−uTvi

)
−
( φi(x)+ τ(x|Ci)

ψi(x)− τ(x|Di)

)]
> 0.

(4)
Now, sincexTzi ≤ τ(x|Ci), xTvi ≤ τ(x|Di), we obtain

[ φi(x)+ τ(x|Ci)

ψi(x)− τ(x|Di)
− φi(x)+ xTzi

ψi(x)− xTvi

]
≥ 0.

Using hypothesis (ii), we haveK∗ ⊆ Rk
+ ⇒ λ ∈

intK∗ ⊆ intRk
+ which yieldsλ > 0. Therefore, the

above inequality implies,
k

∑
i=1

λi

( φi(x)+ τ(x|Ci)

ψi(x)− τ(x|Di)
− φi(x)+ xTzi

ψi(x)− xTvi

)
≥ 0. (5)

Further, on adding(4) and(5), we have
k

∑
i=1

λi

[( φi(x)+ xTzi

ψi(x)− xTvi

)
−
( φi(u)+uTzi

ψi(v)−uTvi

)]
< 0. (6)
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By assumption(i) (since
[ P(.)+ (.)Tz

Q(.)− (.)Tv
,R(.)+(.)Tw

]

is higher order(K ×Q)-F-type I atu in respect with
functionsH andG), we thus have

( φ1(x)+ xTz1

ψ1(x)− xTv1
− φ1(u)+uTz1

ψ1(u)−uTv1
−F

(
x,u;

∇
( φ1(u)+uTz1

ψ1(u)−uTv1

)
+ ∇H1(u, p1)

)
− H1(u, p1) +

pT
1 ∇p1H1(u, p1), ...,

φk(x)+ xTzk

ψk(x)− xTvk
− φk(u)+uTzk

ψk(u)−uTvk
−

F
(

x,u;∇
( φk(u)+uTzk

ψk(u)−uTvk

)
+∇Hk(u, pk)

)
−Hk(u, pk)

+pT
k ∇pkHk(u, pk)

)
∈ K, (7)

and
(
−ϕ1(u)−uTw1−F

(
x,u;∇(ϕ1(u)+uTw1)

+∇q1G1(u,q1)
)
−G1(u,q1)+qT

1 ∇q1G1(u,q1),

...,−ϕm(u) − uTwm − F
(

x,u;∇(ϕm(u) + uTwm) +

∇qmGm(u,qm)
)
−Gm(u,qm)

+qT
m∇qmGm(u,qm)

)
∈ Q. (8)

From(7) andλ ∈ intK∗, we obtain

k

∑
i=1

λi

[ φi(x)+ xTzi

ψi(x)− xTvi
− φi(u)+uTzi

ψi(u)−uTvi

−F
(

x,u;∇
( φi(u)+uTzi

ψi(u)−uTvi

)
+∇pi Hi(u, pi)

)

−Hi(u, pi)+ pT
i ∇pi Hi(u, pi)

]
≥ 0.

Using λ > 0 and the fact thatF is sublinear, we
get

k

∑
i=1

λi

( φi(x)+ xTzi

ψi(x)− xTvi
− φi(u)+uTzi

ψi(u)−uTvi

)

≥
k

∑
i=1

λi

[
Hi(u, pi)− pT

i ∇pi Hi(u, pi)
]

+F
(

x,u;
k

∑
i=1

λi

(
∇
( φi(u)+uTzi

ψi(u)−uTvi

)
+∇pi Hi(u, pi)

))
.

(9)
Again from(8) andµ∈ intQ∗, we have

m

∑
j=1

µj

(
−(ϕ j(u)+uTwj)−F(x,u;∇(ϕ j (u)+uTwj)+

∇q j G j(u,q j))−G j(u,q j)+qT
j ∇q j G j(u,q j)

)
≥ 0.

Now, by assumption (ii),Q∗ ⊆ Rm
+ ⇒ µ ∈ intQ∗ ⊆

intRm
+ which yields µ > 0. Therefore, the above

inequality and the sublinearity ofF together imply,

m

∑
j=1

µj

[
− (ϕ j(u)+uTwj)−G j(u,q j)

+qT
j ∇q j G j(u,q j)

]

≥ F
(

x,u;
m

∑
j=1

µj

(
∇(ϕ j (u)+uTwj )+∇q j G j(u,q j)

))
.

(10)
It follows from the sublinearity ofF, (9) and(10) that

k

∑
i=1

λi

[ φi(x)+ xTzi

ψi(x)− xTvi
−
( φi(u)+uTzi

ψi(u)−uTvi

)]

≥
k

∑
i=1

[
Hi(u, pi) − pT

i ∇pi Hi(u, pi)
]

+

F
[
x,u;

k

∑
i=1

λi

(
∇
( φi(u)+uTzi

ψi(u)−uTvi

)
+∇pi Hi(u, pi)

)
+

m

∑
j=1

µj

(
∇(ϕ j(u) + uTwj) + ∇q j G j(u,q j)

)]
−

m

∑
j=1

µj

[
− (ϕ j(u) + uTwj) − G j(u,q j) +

qT
j ∇q j G j(u,q j)

]
.

Finally, using dual constraint(1)-(3), we get

k

∑
i=1

λi

[ φi(x)+ xTzi

ψi(x)− xTvi
−
( φi(u)+uTzi

ψi(u)−uTvi

)]
≥ 0,

which contradicts(6). Hence the result. �

Definition 3.1 (Clarke, 1983). The function
g : Rn → R will be called a locally Lipschitz at
x0 ∈ Rn if ∃ k≥ 0 and a neighbourhoodδ(x0) of x0 s.
t.

||g(x)−g(y)|| ≤ k||x− y||, ∀ x, y∈ δ(x0).

Definition 3.2 (Husain and Zabeen, 2005). A locally
Lipschitz functiong : Rn×Rn → R at x0 ∈ Rn in the
directiont ∈ Rn is said to have generalized directional
derivative if

g′(x0; t) = limy→x0 supp↓0+
g(y+ pt)−g(y)

p
,

wherey∈ Rn andp> 0.
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Definition 3.3 (Wang, 2005). A function g which is
also locally Lipschitz atx0 ∈ Rn is said to have gener-
alized gradient or the subdifferential if

∂g(x0) = {ζ ∈ Rn : g′(x0; t)≥ 〈ζ, t〉, ∀ t ∈ Rn}.
Remark 3.2.

(i) For a convex functionφ, it will be called locally
Lipschitz atx0 ∈ Rn, if

∂φ(x0) = {ζ ∈ Rn : φ(x)−φ(x0)≥ (x− x0)
Tζ,

∀ x∈ Rn}.
(ii) If φ at x0 is continuously differentiable, thenφ

at x0 will be locally Lipschitz, and therefore,
∂φ(x0) = {∇φ(x0)}.

Lemma 3.1.Let us deal with the problem:

(P) K−minimize θ(x)

subject to −ω(x) ∈ Q,

whereθ : Rn → Rk andω : Rn → Rm are locally Lips-
chitz functions. For this problem, suppose ¯x be weak
efficient solution, then∃ (0,0) 6= (λ,µ) ∈ intK∗ ×
intQ∗ in such a way that

0∈ ∂c(λTθ+µTω)(x̄), (µTω)(x̄) = 0.

Proof. It follows on the lines of (Craven, 1989) and
(Wang et al., 2008). �

Proposition 3.1 (Husain and Zabeen, 2005).
Let us suppose thatφ1 : Rn → R andφ2 : Rn → R at

x0 ∈ Rn be locally Lipschitz withφ2(x) 6= 0. Then
φ1

φ2
will be locally Lipschitz atx0 ∈ Rn.

With the help of the above lemma and the proposi-
tion, we will now prove the following result, between
(KP) and (MPD).

Theorem 3.2 (Strong Duality). If x̄ is a weak effi-
cient of (KP), then∃ (0,0) 6= (λ̄, µ̄) ∈ intK∗× intQ∗,
z̄i ∈ Ci , vi ∈ Di , wj ∈ M j ; i belongs to the index set
{1,2, ...,k}, and j belongs to{1,2, ...,m} in such
a way that, (x̄, v̄, w̄, λ̄, µ̄, z̄, p̄ = 0, q̄ = 0) belongs
to the feasible set for (MPD) and their respective
objective functions possesses same values pro-
vided H(x̄,0) = 0, G(x̄,0) = 0, ∇pi Hi(x̄,0) = 0,
∇q j G j(x̄,0) = 0, i = 1,2, ...,k, j = 1,2, ...,m.

Moreover, if the supposition of Theorem
3.1 are fulfilled for every feasible solutionx
of (KP) and (u,v,w,λ,µ,z, p,q) of (MPD), then
(x̄, v̄, w̄, λ̄, µ̄, z̄, p̄= 0, q̄= 0) is an efficient for (MPD).

Proof. Let x̄ ∈ X0 be a weak efficient of (KP)

and suppose thatθ : Rn → Rk, ϕ : Rn → Rm be taken
as

θ(x) =
( φ1(x)+ τ(x|C1)

ψ1(x)− τ(x|D1)
, ...,

φk(x)+ τ(x|Ck)

ψk(x)− τ(x|Dk)

)

and ω(x) =
(

ϕ1(x)+τ(x|M1), ...,ϕm(x)+τ(x|Mm)
)
.

The functions τ(x|Ci), τ(x|Di) and τ(x|M j ),
(i = 1,2, ...,k, j = 1,2, ...,m) are locally Lips-
chitz, since each of them are convex. Also,φ , ψ and
ϕ are functions which are continuously differentiable,
hence the above functions are also locally Lipschitz
and as a result,φi(x) + τ(x|Ci), ψi(x)− τ(x|Di), i
takes values from 1,2, ...,k and ϕ j(x) + τ(x|M j ), j
takes values from 1,2, ...,m are locally Lipschitz.

Using the Proposition 3.1, we thus conclude
thatθ(x) andω(x) are also locally Lipschitz.

Following the Lemma 3.1,∃ λ̄ ∈ intK∗ andµ̄∈ intQ∗,
(λ̄, µ̄) not equal to(0,0) in such a way that

0∈ ∂c
[ k

∑
i=1

λ̄i

( φi(x̄)+ τ(x̄|Ci)

ψi(x̄)− τ(x̄|Di)

)
+

m

∑
j=1

µ̄j

(
ϕ j(x̄)+

τ(x̄|M j)
)]

and
m

∑
j=1

µ̄j

(
ϕ j(x̄)+ τ(x̄|M j)

)
= 0,

which implies

0∈
k

∑
i=1

λ̄i

(
∂c
( φi(x̄)+ τ(x̄|Ci)

ψi(x̄)− τ(x̄|Di)

))
+

m

∑
j=1

µ̄j(∇ϕ j (x̄))

+
m

∑
j=1

µ̄j∂cS(x̄|M j).

As we know that the support functions are convex, we
have

∂cτ(x̄|Ci) = ∂τ(x̄|Ci),∂cτ(x̄|Di) = ∂τ(x̄|Di) and

∂cτ(x̄|M j) = ∂τ(x̄|M j)

Therefore, there exist ¯zi ∈ ∂τ(x̄|Ci), v̄i ∈ ∂τ(x̄|Di) and
w̄j ∈ ∂τ(x̄|M j) just as if

x̄T z̄i = τ(x̄|Ci), x̄T v̄i = τ(x̄|Di) andx̄Tw̄j = τ(x̄|M j ),
(11)

Hence,

k

∑
i=1

λ̄i

(
∇
( φi(x̄)+ x̄T z̄i

ψi(x̄)− x̄T v̄i

))
+

m

∑
j=1

µ̄j(∇ϕ j(x̄)+ x̄Tw̄j)= 0,

and
m

∑
j=1

µ̄j (∇ϕ j(x̄)+ x̄T w̄j) = 0.

On Duality with Support Functions for a Multiobjective Fractional Programming Problem

119



Using H(x̄,0) = G(x̄,0) = 0, ∇pi Hi(x̄,0) = 0 and
∇qj Gj(x̄,0) = 0, (i = 1,2, ...,k, j = 1,2, ...,m), we
obtain (x̄, v̄,w̄, λ̄, µ̄, z̄, p̄ = 0, q̄ = 0) belongs to the
domain feasible for (MPD) and also the respective
values of the objectives are equivalent.

We now claim that for (MPD)(x̄, v̄,w̄, λ̄, µ̄, z̄, p̄ =
0, q̄= 0) is efficient.

On the contrary, let us assume that
(x̄, v̄,w̄, λ̄, µ̄, z̄, p̄ = 0, q̄ = 0) be efficient for (MPD),
therefore∃ (u,v,w,λ,µ,z, p,q), which is in the feasible
domain for (MPD) such that

[ φ1(u)+uT z1

ψ1(u)−uT v1
, ...,

φk(u)+uT zk

ψk(u)−uT vk

]

−
[ φ1(x̄)+ x̄T z̄1

ψ1(x̄)− x̄T v̄1
, ...,

φk(x̄)+ x̄T z̄k

ψk(x̄)− x̄T v̄k

]

∈ K\{0}

which using(11) imply

[ φ1(u)+uT z1

ψ1(u)−uT v1
, ...,

φk(u)+uT zk

ψk(u)−uT vk

]

−
[ φ1(x̄)+ τ(x̄|C1)

ψ1(x̄)− τ(x̄|D1)
, ...,

φk(x̄)+ τ(x̄|Ck)

ψk(x̄)− τ(x̄|Dk)

]

∈ K\{0},

a contradiction to the Theorem 3.1. Therefore,
the required result. �

4 CONCLUSIONS

In this paper, we have presented a current class of
higher order(K × Q)- F-type I function. A Mond-
Weir type higher order multiobjective fractional prob-
lem (which is also nondiifferentiable) over cone has
been constructed. Considering this dual program, we
have established the corresponding duality relation un-
der higher order(K ×Q)- F-type I function. The re-
sults which we have put forward in this paper are ex-
tension of some previously studied results appearing in
the literature. It is to be noted that, researchers can
further extend our work for different types of duality
problems for fractional problems, such as, mixed type
duality etc.
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