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Abstract: High-throughput technologies such as microarrays and mass spectrometry produced high dimensional 
biological datasets both in abundance and with increasing complexity. Prediction Analysis for Microarrays 
(PAM) is a well-known implementation of the Nearest Shrunken Centroid (NSC) method which has been 
widely used for classification of biological data. In this paper, a hybrid approach incorporating the Nearest 
Shrunken Centroid (NSC) and Memetic Algorithm (MA) is proposed to automatically search for an optimal 
range of shrinkage threshold values for the NSC to improve feature selection and classification accuracy. 
Evaluation of the approach involved nine biological datasets and results showed improved feature selection 
stability over existing evolutionary approaches as well as improved classification accuracy. 

1 INTRODUCTION 

Recent reviews (Hilario and Kalousis, 2008) have 
described numerous feature selection techniques for 
identifying informative biomarkers from biological 
datasets. The two main objectives of feature 
selection is achieving high classification accuracy 
and high reproducibility of a pertinent list of 
biomarkers (i.e. feature selection stability). Stability 
is a term used to describe the sensitivity of a feature 
selection algorithm to small variations in the training 
data and in the settings of the algorithmic 
parameters, resulting in different feature sets being 
produced by the algorithm.  

Many studies (Kim et al., 2010; Yu and Liu, 
2004), have used the Nearest Shrunken Centroid 
(NSC) algorithm (Tibshirani et al., 2002) for feature 
selection (FS) and classification in high dimensional 
biomedical data. This algorithm, with its most well-
known software implementation being known as 
Prediction Analysis for Microarrays (PAM), requires 
a shrinkage threshold value as input for performing 
FS and classification. The choice of this threshold 
value, as stated in the PAM User guide, is 
determined “after a judicious examination of 
training errors and the cross-validation results”. 
Hence, the selection of the optimal shrinkage 
threshold value is typically a manual process based 
on “trial and error” by setting the shrinkage 

threshold value to vary equally using a predefined 
step size across a predefined range (Lusa, 2012). 
However, shrinkage threshold values selected in this 
way may not give optimal solutions (Dang et al., 
2013) and is also a very time consuming process. 

A hybrid approach (NSC-GA) (Dang et al., 
2013), incorporating GA and NSC to automatically 
find the optimal shrinkage threshold value.  
Computation time associated with GA processing 
can be intensive (Elbeltagi et al., 2005) . One of the 
approaches to improve GAs both in terms of 
computation time and quality of optimal solutions is 
the use of a memetic algorithm (MA) (Elbeltagi et 
al., 2005).   

In this paper, an approach of incorporating the 
NSC algorithm into a MA, namely NSC-MA, for 
automatically searching for an optimal range of 
shrinkage threshold values is proposed. The aim 
here is to explore how to improve the NSC-GA 
approach  (Dang et al., 2013) for achieving 
robustness of selected feature subsets and stability in 
signatures of biomarkers. Unlike NSC-GA, the 
proposed approach consistently reproduces the same 
candidate feature subset from repeated runs 
involving a dataset.  

The rest of the paper is organized as follows: 
Section 2 reviews some related work, Section 3 
describes details of the proposed approach, datasets, 
results and discussion are presented in Section 4, and 
conclusion is drawn in Section 5. 
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2 RELATED WORK 

Chin et al., (2015) completed a comprehensive 
review of feature selection methods for gene 
selection, categorising these into three classes, 
namely supervised, unsupevised and semi-
supervised. Each of these 3 classes are further 
refined into sub-categories on the basis of evaluation 
criterion into filter, wrapper or embedded methods. 
Statistical metrics are used in filter methods to rank 
each feature individually or subsets of features for 
its ability to discriminate between classes. In 
wrapper-based methods, classification models are 
used to determine the relevance of sets of features 
and embedded methods are similar to wrapper 
methods except for a much tighter coupling between 
feature selection and classifier. Feature selection is 
NP-hard and can be approximated via a heuristic 
search for an "optimal" feature subset. In conclusion, 
Chin et al., (2015) discussed a number of areas 
needing future research, amongst these, is the need 
to develop methods for robustness of selected 
feature subsets (i.e. stability of signature).   

Dang et al., (2013) developed a wrapper 
approach (NSC-GA) involving genetic algorithm 
and NSC and evaluated the approach on microarray 
data. Similar to PAM (Tibshirani et al., 2002), the 
selection of subsets of features utilize a penalized t-
statistic but the approach automatically determines 
the  required  soft-threshold for identifying a gene 
set for classification. Experimental results show that 
the optimal threshold value obtained using NSC-GA 
resulted in a smaller number of features and higher 
classification accuracies on test datasets in 
comparison to   previous studies such as Klassen and 
Kim (2009). 

Soufan et al., (2015) developed a web-based, 
wrapper feature selection tool using a parallel GA as 
its search strategy that allows concurrent evaluations 
of large number of candidate subsets.  The tool is 
flexible for its range of filtering methods as well as 
its functionality of allowing for adjustments of 
weights and parameters in the fitness function.  

Zhu et al., (2007b) incorporated a memetic 
algorithm (MA) in their approaches, namely 
WFFSA and MBEGA (Zhu et al., 2007a) for finding 
relevant features in microarray  data. Both these 
approaches were based on the traditional GA and a 
local search (LS) algorithm that incorporated filter 
ranking method for WFFSA and Markov Blanket for 
MBEGA respectively. Binary representation (1, 0) 
was the encoding for individuals and the SVM 
classifier was employed to evaluate the fitness of 
individuals.  Empirical evaluations of these two 

approaches on microarray datasets indicate that they 
outperformed many existing methods in terms of 
classification accuracy, number of selected genes 
and search efficiency.  

3 NSC-MA PROPOSED 
APPROACH 

MA is a hybrid of EAs which involves an 
evolutionary algorithm (EA) and a local search (LS) 
to improve the fitness of chromosome (Krasnogor 
and Smith, 2005; Wu, 2001). As shown in Figure 1, 
the 2 major steps in NSC-MA are:  

Step 1: This step involved the automatic 
calculation of Thmax. This procedure is performed 
once only at the beginning of the proposed approach, 
NSC-MA, to obtain Thmax. 

Step 2: MA  (Moscato, 1989) is employed in this 
step as an optimization method to search for optimal 
sets of shrinkage thresholds for NSC algorithm that 
lead to the selection of optimal sets of features. NSC 
algorithm is employed as a fitness evaluator to 
evaluate the fitness of each chromosome in terms of 
the number of selected features and its 
corresponding training classification accuracy. 

 

Figure 1: Framework of the proposed approach, NSC-MA, 
using MA with adding and subtracting Improvement First 
Strategy LS. 
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Gene value in each chromosome in the population is 
initialized to a real value within the range of [0, 
Thmax] using a random number generator. The 
random number generator uses a different seed for 
each initialization of a new population. Details 
associated with determination of Thmax can be found 
in Dang et al., (2013). 

3.1 Fitness Evaluation 

The NSC algorithm (Tibshirani et al., 2002) is the 
fitness evaluator for obtaining the overall fitness, 
FitnessInd, for each individual chromosome. As 
defined in Equation (1), FitnessInd is calculated by 
averaging the fitness values associated with all the 
threshold values for a chromosome. 

FitnessInd= ∑ f
୧ୀଵ th / M (1)

 

where M is a number of genes or threshold values in 
a chromosome. 

The function fth in Equation (2) consists of two 
other functions, f1 and f2: 

fth = f1 + f2 (2)

f1 = (Ntotal - Natt) / Ntotal (3)

f2= 
TP+TN

TP+FP+TN+FN
 (4)

where  TP is the true positives, TN is the true 
negative, FP is the false positive, FN is the false 
negative. Ntotal equals to the total number of 
attributes (features) in the dataset, Natt is the number 
of attributes selected by NSC. f1 is designed for 
evaluating the fitness of a threshold that leads to a 
minimum number of attributes, whilst f2 is 
associated with the maximum classification 
accuracy. 

3.2 Generating New Population 

The procedure for generating a new population using 
MA incorporated adding and subtracting LS with 
Improvement First Strategy is as follows: 

Input: 
 Chromosome population (p) 
 Fitness population (Fp) 
  Crossover probability (Pc) 
  Mutation probability (Pm) 
  Elite chromosome (Elite) 
  Chromosome length (lenC) 
Output: 
 New population (Np) 
 Steps: 
  1. Set Size=size of population, p 
  2. Set new population (Np)={∅} 
  3. Store Elite into Np 
  4. For counter from 1 to ½ Size 
  a. Select 2 parent chromosomes  

 using binary tournament  selection 
 i. Select 2 chromosomes randomly     
from p 

 Select the best fit chromosome as 
1st parent (parent1)  

ii. Select 2 chromosomes randomly from 
p 
 Select the best fit chromosome as 
2nd parent (parent2) 

b. Create 2 offspring chromosomes using 
parent1 and parent2 

 i. Generate a random number (Rn) in 
the range [0, 1] using RNG 

ii. If Rn ≤ Pc 
 Perform one point crossover on 2 
parents to produce offspring1 and 
offspring2 

 Perform adding and subtracting LS 
with Improvement First Strategy 
on offspring1 and offspring2 to 
produce 2 new offspring 
(offspring1lscross and 
offspring2lscross)  

iii. If Rn ≤ Pm 
For counter from 1 to lenC 
 Generate a random number 
(Rn) in the range [0, 1] 
using RNG 

If Rn ≤ Pm 
 Perform uniform mutation on 
each bit of offspring1 to 
generate offspring1mut  

 Perform uniform mutation on 
each bit of offspring2 to 
generate offspring2mut 

 Perform adding and 
subtracting LS with 
Improvement First Strategy 
on offspring1mut and 
offspring2mut to produce 2 
new offspring 
(offspring1lsmut and 
offspring2lsmut)  

iv. Evaluate fitness of 
offspring1lscross, offspring2lscross, 
offspring1lsmut and offspring2lsmut 
chromosomes 

c. Store the best 2 chromosomes into Np. 

This step involved the “adding and subtracting LS 
with Improvement First Strategy” step, which is 
applied to offspring chromosomes after crossover 
and mutation in order to further improve its quality.  

A single elitist strategy is employed where the 
best candidate solution (elite) from the previous 
generation is placed into the new population.  To 
produce new offspring, Binary Tournament selection 
is used to select the individuals as parents to go 
through crossover, mutation and LS strategy.  Two 
best offspring chromosomes from each of these 
iterations are then placed into the new population. 

The procedure for the “adding and subtracting 
LS with Improvement First Strategy” step is as 
follows: 
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Input: 
Chromosome (chrom) 
Chromosome length (len) 

Output: 
An improved local search chromosome 

(chromls)  
Steps: 
1. Generate a real random number (Rn) 
in the range [0,1] using RNG 
2. Evaluate fitness of chrom 
3. set fitness of chromls=0 
4. set counter=1 
5. While (counter<=len) and (fitness 
chromls<=fitness chrom) 

a. Add Rn to chrom[counter] to 
create a new chromosome (chromls) 
b. Evaluate the fitness of chromls 
c. If fitness of chromls > chrom  

Retain chromls as an improved 
local search chromosome 

d. Else  
 subtract Rn to chrom[counter] 
create a new chromosome 
(chromls) 

 evaluate the fitness of chromls 
 If fitness of chromls> chrom  
retain chromls as an improved 
local search chromosome 

 Else 
      discard chromls 
      update counter=counter+1 

3.3 Parameter Settings 

Table 1: Parameter settings used in the proposed approach 
NSC-MA. 

Parameters Values/Algorithm 
Population size 30 

Chromosome length 10 
Crossover rate 0.6 
Mutation rate 0.0333 

Maximum generation 1000 
Selection Binary Tournament 
Crossover Single point 
Mutation Uniform 

Elitist Single 

Local search 
Adding and subtracting with First 

Improvement Strategy 

The parameter settings for running NSC-MA are 
shown in Table 1. The  parameters that are tuned 
include population size, crossover probability rate, 
and mutation probability rate, with   these values in 
the table, being taken from an empirical experiment 
(Dang, 2014). Uniform mutation (Eiben and Smith, 
2007) modifies a chromosome by replacing its gene 
value with a mutated number, Nmut, which is 
calculated using equation (5). 

Nmut = Lb + (Rn * (Ub - Lb)) (5)

where Lb is lower bound of chromosome, Rn is a 

random number generated by RNG, Ub is upper 
bound of chromosome. 

4 RESULTS AND DISCUSSION 

Table 2 showed a summary of the nine datasets that 
have been used widely by many recent 
investigations as demonstrated in Chin et al (2015). 
These include: AD Disease (Ray et al., 2007), Colon 
(Alon et al., 1999), Leukemia (Golub et al., 1999), 
Ovarian (Petricoin et al., 2002), Lymphoma 
(Alizadeh et al., 2000), Lung (Gordon et al., 2002), 
Prostate (Singh et al., 2002), Central Nervous 
System (CNS) (Pomeroy et al., 2002) and Breast-
A (van't Veer et al., 2002) that we used to evaluate 
NSC-MA. Each dataset is partitioned into a training 
dataset and an unseen test set using either the same 
configuration as proposed by their original authors 
(as cited for each dataset mentioned above), or those 
of other authors who have used the same datasets in 
their studies. 

Table 2: Summary of nine public datasets used for the 
NSC-MA approach. 

Dataset Type of data 
No of 
attr. 

No of 
classes 

No of 
Samples 

AD 
Protein 

Immunoa-ssay
120 2 259 

Colon 

Cancer 
microarray 

2000 2 62 
Leukemia 7129 2 72 

Lung 12533 2 181 
Lymphoma 4026 2 47 

Prostate 12600 2 136 

CNS 7129 2 60 
Breast-A 1213 3 98 

Ovarian 
Proteomic 

spectra 
15154 2 253 

For each of the nine datasets, 15 independent 
runs of NSC-MA were executed using the respective 
training dataset and parameter values shown in 
Table 1. Each independent run involved an initial 
population produced using the Random Number 
Generator with a random seed. For each run, 10 fold 
cross validation (CV) strategy was employed to 
evaluate the selected feature sets. The optimal set of 
features was then used to construct the NSC 
classifier to classify the unseen test data associated 
with the dataset. The average classification accuracy 
was calculated from these runs.  

A simple multi-start local search algorithm 
(MSLS) based on a local search method (Lourenço 
et al., 2001) was implemented for comparison of 
performance with NSC-MA. 15 independent runs of 
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MSLS were also executed using the respective 
training dataset. 

The results are examined from 2 perspectives: 
diagnostic relevance in terms of features used in the 
construction of accurate diagnostic classifiers for 
prediction and by examination of the literature for 
the established implication of the selected set of 
features to specific diseases (Table 4). Table 3 
showed comparisons of results from NSC-MA with 
MSLS and other studies using equivalent protocol, 
that is training a classifier using a training set and 
evaluation of performance involved an unseen test 
set. NSC-MA consistently selected only one set 
features  over  15 independent runs.  This shows that 
the stability of NSC-MA is improved over NSC-GA. 
For example for Colon cancer dataset, NSC-GA 
selected 2 sets of 6 and 28 features, whilst NSC-MA 
selected only one set of 28 features, for Lung cancer 
dataset, NSC-GA selected 4 sets of 8, 9, 10 and 11 
features whilst NSC-MA selected only one set of 8 
features with the same classification accuracy of 

100%. With the AD, CNS and Breast-A datasets, 
both NSC-MA and MSLS returned the same results 
but with the remaining 6 datasets, there is a lot more 
variability in terms of the number of selected subsets 
as well as the number of features in the respective 
feature subsets from employing MSLS, thus 
demonstrating that NSC-MA has better feature 
selection stability over MSLS. 

NSC-MA achieved very similar classification 
results to NSC-GA. In comparison to other existing 
techniques, NSC-MA achieved better classification 
results in most cases using a smaller feature sets. 
The set of 11 features associated with the AD dataset 
is a subset of the 18 identified by Ray et al., (2007). 
For the Colon dataset, it is not possible to check the 
set of 28 genes found by the proposed approach 
against the set of 16 genes in Klassen and Kim 
(2009) as these were not listed in their study. 

 
 

Table 3: Summary of results obtained from the NSC-MA approach in comparison with existing approaches. Each cell 
indicates the average unseen test classification % and the number of selected genes in () associated with 15 independent 
runs. In cells with multiple entries, this is associated with some of the 15 runs returning different subsets of features. 

Approach AD Colon Leukemia Ovarian Lymphoma Lung Prostate CNS Breast-A
Proposed 
approach 
NSC-MA 

89.34 
(11) 

100 
(28) 

97.05 
(9) 

96.06 
(7) 

100(128) 100(8) 90.2(6) 65.51(3) 89.58(2) 

NSC-GA(Dang 
et al., 2013) 

89.49 
(11) 

93.75 
(6) 

 
100 
(28) 

97.05 
(9) 

 
 

96.06 
(7) 

 
 

95.45(7) 
95.45(12) 
100(128) 
100(129) 
100(132) 

100(8) 
100(9) 

100(10) 
100(11) 

90.2(6) 65.51(3) 89.58(2) 

NSC  (Ray et 
al., 2007) 

89 
(18) 

        

NSC  (Klassen 
and Kim, 2009) 

 75(16) 
94.12 
(21) 

 86.6(25) 93.7(5) 90.91(6)   

ALP-NSC, 
AHP-NSC 

(Wang and Zhu, 
2007) 

  
94.12 
(16) 

      

Weighted NSC 
(Tai and Pan, 

2007) 
     99.55(6) 

60.51 
(10) 

  

FAIR (Gordon 
et al., 2002) 

  
97.05 
(11)   95.3(31) 73.52(2)   

GCLUS & 
SERA 

(Baggiolini et 
al., 1989) 

   
97.63 
(47) 

    
 
 
 

Multi-Start 
Local Search 

(MSLS) 

88.62 
(11) 

93.75 (1) 
93.75(6) 
100(28) 

93.75(29) 
87.5(34) 
87.5(35) 

 

91.17(1) 
91.17(2) 
91.17(3) 

    96.06(7) 
 96.06(36) 
 96.06(37) 

    96.06(38) 

 

95.45(7) 
100 

(128, 130, 132, 
135, 137, 139, 
145, 140, 151) 

 

100(8) 
100(9) 

  100(10) 
      100(11) 

 

88.23(3) 
88.23(4) 
90.2(5) 
90.2(6) 

 

65.51(3) 

 

89.58 
(2) 
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Table 4: The sets of features selected by NSC-MA for nine datasets AD, Colon, Leukemia, Ovarian, Lymphoma, Lung, 
Prostate CNS and Breast-A. 

Dataset 
No of 
Attr 

Acc No 

AD 11 
PDGF-BB_1 RANTES_1 IL-1a_1 TNF-a_1 EGF_1 M-CSF_1 ICAM-1_1 IL-11_1 IL-

3_1 GCSF_1 ANG-2_1 

Colon 28 

T95018, X55715, M63391, H40560, T92451, T57619, R78934, T58861, M26697, 
M76378, R87126, H43887, H64489, M22382, T71025, Z24727, Z50753, X12671, 
T47377, L05144, H55758, M64110, M76378, T60155, M76378, J02854, X86693, 

T60778 
Leukemia 9 M27891, M84526, M96326, U46751, U50136, X17042, X95735, M28310, Y00787 

Ovarian 7 
MZ244.36855, MZ244.66041, MZ244.95245, Z245.24466, MZ245.8296, 

MZ245.53704 and MZ246.12233 

Lymphoma 7 
GENE3327X, GENE3329X, GENE3330X, GENE3332X, GENE3361X, 

GENE3258X, GENE3256X 
Lung 8 32551_at, 33328_at, 34320_at, 36533_at, 37157_at, 37716_at, 37954_at, 40936_at 

Prostate 6 31444_s_at, 41468_at, 37639_at, 38406_f_at, 769_s_at and 556_s_at 
CNS 3 L17131_rna1_at, Yo7604_at, U33448_s_at 

Breast-A 2 LY6D, ESR1 
 

In the case of the Leukemia cancer dataset, NSC-
MA obtained a smaller set of 9 genes and 
classification accuracy of 97.05%  when compared 
to 96% using 10 genes in (Huang, 2009) with 2 
genes (M27891, X95735) in common. Eight genes 
(M27891, M84526, M96326, U46751, U50136, 
X95735, M28130, Y00787) are a subset of the set of 
48 features selected using GA and ANNs in (Tong et 
al., 2009). 

This nine gene is also a subset of the set of 50 
highly expressed genes identified by (Masys et al., 
2001) for predicting disease from non-disease. For 
the Ovarian cancer dataset, NSC-MA identified a set 
of 7 features, MZ244.36855, MZ244.66041, 
MZ244.95245, Z245.24466, MZ245.8296, 
MZ245.53704 and MZ246.12233 which is a subset 
of the 47 peptides reported in Foss (Foss, 2011), 
with similar classification accuracy of 96.06% on 
the unseen test set. Six peptides in this set are among 
the top 10 peptides identified in Yap et al., (2007). 
In terms of the Lung cancer dataset, using a set of 6 
features, Tai and Pan (2007) achieved  99.55%  
whereas NSC-MA used 8 features and obtained 
100% classification accuracy on the unseen test set. 
However, the identified features have not been listed 
in Tai and Pan’s paper. For the Breast cancer 
dataset, NSC-MA identified a set of 2 features, 
LY6D (Lymphocyte antigen 6 complex, locus D) 
and ESR1 (Estrogen receptor 1). LY6D is strongly 
expressed in cervical cancer, head and neck cancer, 
lung cancer, skin cancer and urothelial cancer, and 
also a marker of the earliest stage of B-cell 
specification (GeneCards; The Human Protein 
Atlas). ESR1 is cancer and disease related genes, 
and   also   involved  in   pathological   processes   in 

endometrial and breast cancer (The Human Protein 
Atlas).  

To obtain an overall estimate of the 
computational effort of using NSC-GA and NSC-
MA to analyse the nine datasets, we collected the 
total time taken for each of their 15 independent 
runs. The average time taken by NSC-GA is 1290.39 
minutes and 1219.56 minutes for NSC-MA.  

5 CONCLUSIONS 

The shrinkage threshold value must be provided as 
an input to the NSC algorithm and an appropriate 
choice is extremely important in terms of feature 
selection and classification accuracy.  Researchers 
have used approaches of trial and error to select a 
threshold value that produced minimum 
classification errors and some emerging work has 
investigated approaches to automatically produce 
this value. A novel approach incorporating NSC and 
MA algorithm is proposed in this study in order to 
overcome limitations of the previous approaches 
such as empirical methods with NSC and NSC-GA. 
Evaluation of the approach involved nine biological 
datasets and results showed improved feature 
selection stability over existing evolutionary 
approaches as well as improved classification 
accuracy. 
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