Intelligent Robotic Approach for After-stroke Hand Rehabilitation

Nirvana Popescu, Decebal Popescu, Mircea Ivănescu

Abstract

This paper presents the design of an intelligent haptic robotic glove (IHRG) model for the rehabilitation of the patients that have been diagnosed with a cerebrovascular accident (CVA). Total loss or loss of range of motion, decreased reaction times and disordered movement organization create deficits in motor control, which affect the patient’s independent living. The control system for a rehabilitation hand exoskeleton is discussed. One contribution is given by using a velocity observer and a force observer for performance evaluation. The disturbance effects are eliminated by a cascade closed loop control with velocity and force observers. The performance of the control system is demonstrated by the simulation. The second proposed control implementation version has a great advantage - the possibility to specify some vocal commands, which will help the patient to make a lot of medical exercises by themselves.

References

  1. Barbay, S., Guggenmos, D. J., Nishibe, M., Nudo, R. J., 2013. Motor representations in the intact hemisphere of the rat are reduced after repetitive training of the impaired forelimb. Neurorehabilitation and neural repair, 27: 381-384.
  2. Biagiotti, L., Lotti, F., Melchiorri, C., Vassura, G., 2009. How Far Is the Human Hand? A Review on Anthropomorphic Robotic End-effectors, DEIS - DIEM, University of Bologna.
  3. Birglen, L., Gosselin, C., 2003. On the Force Capabilities of Underactuated Fingers, Proc. IEEE Intl. Conf. Rob. Aut., Taipei, Taiwan, pp. 1139-1145.
  4. Birglen, L., Gosselin, C., 2004. Kinetostatic Analysis of Underactuated Fingers, IEEE Trans. Rob. Aut., 20(2), pp. 211-221.
  5. Birglen L., Gosselin, C., 2004. Optimal Design of 2- Phalanx Underactuated Fingers, Proc. Intl. Conf. Intel.Manip. Grasp., Genova, Italy, pp. 110-116.
  6. Brokaw, E.B., Black, I., Holley, R., Lum, P., 2011. Hand Spring Operated Movement Enhancer (HandSome): A Portable Passive Hand Exoskeleton for Stroke Rehabilitation, IEEE Trans on Neural Systems and Rehabilitation Eng vol 19, No4 ,August, pp391-398.
  7. Carrozze, M.C., Vecchi, F., Sebastiani, F., Cappiello, G., Roccella, S., Zecca, M., Lazzarini, R., Dario, P., 2003. Experimental Analysis of an Innovative Prosthetic Hand with Proprioceptive Sensors, Proc. IEEEIntl. Conf. Rob. Aut., Taipei, Taiwan, pp. 2230-2235.
  8. Chen, W.H., Ballance, D.J., Gawthrop, P.J., O'Reilly, J., 2000. A Nonlinear Disturbance Observer for Robotic Manipulators, IEEE Trans on Industrial Electronics, vol 47, No 4, August, pp 932-938.
  9. French, B., Thomas, L., Leathley, M., Sutton, C., McAdam, J., Forster, A., Langhorne, P., Price, C., Walker, A., Watkins, C., 2010. Does repetitive task training improve functional activity after stroke? A Cochrane systematic review and meta-analysis. Journal of rehabilitation medicine 42: 9-14.
  10. Grebenstein, G., 2010. A Method for Hand Kinematic Designers, ICABB, Venice, Italy.
  11. Housman, S.J., Scott, K.M., Reinkensmeyer, D.J., 2009. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23: 505-514, 2009.
  12. Irimia, D.C., Popescu, C.D., Poboroniuc, M.S., Ignat, B.E., Bolbocean, O., 2014. Using a Motor Imagery basedBCI system for neuroprosthesis control, The 12th Congress of the Romanian Society of Neurology, Bucharest, Romania, Romanian Journal of Neurology (8), ISSN online: 2069-6094, ISSN-L 1843-8148.
  13. Irimia, D.C., Ortner, R., Krausz, G., Guger, C., Poboroniuc, M., 2012. BCI Application in Robotics Control, 14th IFAC Symposium on Information Control Problems in Manufacturing, Bucharest, Romania, 14 (1): 1-6, ISSN: 1474-6670; ISBN: 978-3-902661-98-2, DOI: 10.3182/20120523-3-RO-2023.00432.
  14. Kitago, T., Goldsmith, J., Harran, M., Kane, L., Berard, J., Huang, S., Ryan, S.L., Mazzoni, P., Krakauer, J.W., Huang, V.S., 2015. Robotic therapy for chronic stroke: general recovery of impairment 5 or improved taskspecific skill?, Jurnal of Neurophisyhology, 114(3):1885-94. doi: 10.1152/jn.00336.2015.
  15. Li, J., Wang, S., Wang, J., Zheng, R., Zhang, Y., Chen, Z., 2011. Development of a Hand Exoskeleton System for Index Finger Rehabilitation, Chinese Journal of Mechanical Engineering Vol. 24,aNo. 5.
  16. Lotti, F., Vassura, G., 2005. A Novel Approach to Mechanical Design of Articulated Fingers for Robotic Hands. DIEM, Mech.Eng. Dept, University of Bologna.
  17. Lucas, L., DiCicco, M., Matsuoka, Y., 2004. An EMGControlled Hand Exoskeleton for Natural, Journal of Robotics and Mechatronics, Vol.16 No.5, pp 1-9.
  18. Popescu, N., Popescu, D., Cozma, A., Vaduva, A.J., 2014. Hardware Design and Implementation of an Intelligent Haptic Robotic Glove, Proc. of the the 8th International Conference and Exposition on Electrical and Power Engineering, EPE2014, IASI Romania, ISSN: 978-1-4799-5848-1, 2014.
  19. Popescu, N., Popescu, D., Ivanescu, M., Popescu, D., Vladu, C., Vladu, I., 2013. Force Observer-Based Control for a Rehabilitation Hand Exoskeleton System, Asian Control Conference (ASCC2013), pp. 1-6, Istanbul, Turkey.
  20. Popescu, N., Popescu, D., Poboroniuc, M., Popescu, C.D., 2013. Intelligent Haptic Robotic Glove for Patients Diagnosed with Cerebrovascular Accidents, 19th International Conference on Control Systems and Computer Science, Workshop on Medical and Rehabilitation Engineering Applications, pp 717-721, October, Sinaia.
  21. Popescu, N., Popescu, D., Ivanescu, M., Popescu, D., Vladu, C., Berceanu, C., Poboroniuc, M., 2013. Exoskeleton Design of an Intelligent Haptic Robotic Glove, 19th International Conference on Control Systems and Computer Science, vol. 1, pp. 196-201, Bucharest.
  22. Reynaerts, D., 1995. Control methods and actuation technology for whole-hand dexterous manipulation, .D. dissertation, Prod. Eng. Mach. Design Autom., Catholic Univ. Leuven, Leuven, Belgium.
  23. Rodriguez-Cheu L.E., Casals, A., 2006. Sensing and control of a prosthetic hand with myoelectric feedback, the 1st IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatron., Pisa, Italy.
  24. Xian, C., de Queiroz, M. S., Dawson, D. M., McIntyre, M. L., 2004. A Discontinuous Output Controller and Velocity Observer for Nonlinear Mechanical Systems, Automatica, 40, 4, April, pp. 695-700.
  25. Zhao, J., Xie, Z., Jiang, L., Cai, H., Liu, H., Hirzinger, G., 2006. A fivefingered underactuated prosthetic hand control scheme, 1st IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatron., Pisa, Italy.
Download


Paper Citation


in Harvard Style

Popescu N., Popescu D. and Ivănescu M. (2016). Intelligent Robotic Approach for After-stroke Hand Rehabilitation . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 49-57. DOI: 10.5220/0005662400490057


in Bibtex Style

@conference{healthinf16,
author={Nirvana Popescu and Decebal Popescu and Mircea Ivănescu},
title={Intelligent Robotic Approach for After-stroke Hand Rehabilitation},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)},
year={2016},
pages={49-57},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005662400490057},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)
TI - Intelligent Robotic Approach for After-stroke Hand Rehabilitation
SN - 978-989-758-170-0
AU - Popescu N.
AU - Popescu D.
AU - Ivănescu M.
PY - 2016
SP - 49
EP - 57
DO - 10.5220/0005662400490057