Design of a Web-based Clinical Decision Support System for Guiding Patients with Low Back Pain to the Best Next Step in Primary Healthcare

Wendy Oude Nijeweme-d'Hollosy, Lex van Velsen, Remko Soer, Hermie Hermens

Abstract

Low back pain (LBP) is the most common cause for activity limitation and has a tremendous socioeconomic impact in Western society. In primary care, LBP is commonly treated by general practitioners (GPs) and physiotherapists. In the Netherlands, patients can opt to see a physiotherapist without referral from their GP (so called ‘self-referral’). Although self-referral has improved the choice of care for patients, it also requires that a patient knows exactly how to select the best next step in care for his or her situation, which is not always evident. This paper describes the design of a web-based clinical decision support system (CDSS) that guides patients with LBP in making suitable choices on self-referral. We studied literature and guidelines on LBP and conducted semi-structured interviews with 3 general practitioners and 5 physiotherapists on the classification of LBP with respect to the best next step in care: visit a GP, visit a physiotherapist or perform self-care. The interview results were validated by means of an online survey, which resulted in a select group of key classification factors. Based on the results, we developed an ontology and a decision tree that models the decision making process of the CDSS.

References

  1. American Physical Therapy Association (APTA), 2015, A summary of direct access language in state physical therapy practice acts, http://www.apta.org/uploadedFi les/APTAorg/Advocacy/State/Issues/Direct_Access/D irectAccessbyState.pdf, Sep 9, 2015.
  2. Balagué, F., Troussier, B. and Salminen, J. J., 1999. Nonspecific low back pain in children and adolescents: risk factors. European spine journal, 8(6), 429-438.
  3. Bornhöft, L., Larsson, M. E., and Thorn, J., 2014. Physiotherapy in Primary Care Triage-the effects on utilization of medical services at primary health care clinics by patients and sub-groups of patients with musculoskeletal disorders: a case-control study. Physiotherapy theory and practice, 31(1), 45-52.
  4. Braun, V. and Clarke, V., 2006. Using thematic analysis in psychology. Qualitative research in psychology, 3(2), 77-101.
  5. Chavannes, A. W., Mens, J. M. A., Koes, B. W., Lubbers, W. J., Ostelo, R. W. J. G., Spinnewijn, W. E. M., and Kolnaar, B. G. M., 2009. NHG-standaard aspecifieke lagerugpijn. NHG-Standaarden 2009, Bohn Stafleu van Loghum, 1128-1144.
  6. Childs, J. D., Fritz, J. M., Wu, S. S., Flynn, T. W., Wainner, R. S., Robertson, E. K., Kim, F. S. and George, S. Z., 2015. Implications of early and guideline adherent physical therapy for low back pain on utilization and costs. BMC health services research, 15(1), 150.
  7. Crichton, N., 2001. Visual analogue scale (VAS). Journal of Clinical Nursing, 10(5), 706.
  8. Deyo, R. A., Cherkin, D. C., Weinstein, J., Howe, J., Ciol, M., and Mulley, A. G., 2000. Involving patients in clinical decisions: impact of an interactive video program on use of back surgery. Medical care, 38(9), 959-969.
  9. Ehrlich, G. E., 2003. Low back pain. Bulletin of the World Health Organization, 81(9), 671.
  10. Foster, N. E., Mullis, R., Hill, J. C., Lewis, M., Whitehurst, D. G. T., Doyle, C., Konstantinou, K., Main, C., Somerville, E., Sowden, G., Wathall, S., Young, J., and Hay, E. M., 2014. Effect of stratified care for low back pain in family practice (IMPaCT Back): a prospective population-based sequential comparison. The Annals of Family Medicine, 12(2), 102-111.
  11. Hill, J. C., Whitehurst, D. G. T., Lewis, M., Bryan, S., Dunn, K. M., Foster, N. E., Konstantinou, K., Main, C. J., Mason, E., Somerville, S., Sowden, G., Vohora, K. and Hay, E. M., 2011. Comparison of stratified primary care management for low back pain with current best practice (STarT Back): a randomised controlled trial. The Lancet, 378(9802), 1560-1571.
  12. Intensity, P., 1980. Modified Oswestry Low Back Pain Disability Questionnaire. Physiotherapy, 66, 271-273.
  13. Jimison, H. B., Sher, P. P., and Jimison, J. J., 2007. Decision Support for Patients, in Berner, E. S. (ed.) Clinical Decision Support Systems: Theory and Practice, Springer Science & Business Media, 249-261.
  14. Knops, A. M., Legemate, D. A., Goossens, A., Bossuyt, P. M. and Ubbink, D. T., 2013. Decision aids for patients facing a surgical treatment decision: a systematic review and meta-analysis. Annals of surgery, 257(5), 860-866.
  15. Koes, B. W., van Tulder, M., Lin, C. W. C., Macedo, L. G., McAuley, J., and Maher, C., 2010. An updated overview of clinical guidelines for the management of non-specific low back pain in primary care. European Spine Journal, 19(12), 2075-2094.
  16. Lin, L., Hu, P. J. H., and Sheng, O. R. L., 2006. A decision support system for lower back pain diagnosis: uncertainty management and clinical evaluations. Decision Support Systems, 42(2), 1152-1169.
  17. Linton, S. J. and Boersma, K., 2003. Early identification of patients at risk of developing a persistent back problem: the predictive validity of the Örebro Musculoskeletal Pain Questionnaire. The Clinical journal of pain, 19(2), 80-86.
  18. Musen, M. A., Middleton, B., and Greenes, R. A. , 2014. Clinical decision-support systems. In Biomedical informatics, Springer London, Chapter 20, 643-674.
  19. Nicholas, M. K., Linton, S. J., Watson, P. J. and Main, C. J., 2011. Early identification and management of psychological risk factors (“yellow flags”) in patients with low back pain: a reappraisal. Physical therapy, 91(5).
  20. Oude Nijeweme - d'Hollosy, W., van Velsen, L., Swinkels, I. C. S., and Hermens H., 2015. Clinical Decision Support Systems for Primary Care: The Identification of Promising Application areas and an Initial Design of a CDSS for lower back pain. In Proceedings 17th International Symposium on Health Information Management Research (ISHIMR 2015), York, England, 49-59.
  21. Peiris, D., Williams, C., Holbrook, R., Lindner, R., Reeve, J., Das, A. and Maher, C., 2014. A Web-Based Clinical Decision Support Tool for Primary Health Care Management of Back Pain: Development and Mixed Methods Evaluation, In JMIR research protocols, 3(2).
  22. Perreault, L. E., and Metzger, J. B., 1999. A pragmatic framework for understanding clinical decision support. Journal of Healthcare Information Management, 13, 5- 22.
  23. Rolli Salathé, C., and Elfering, A., 2013. A health-and resource-oriented perspective on NSLBP. ISRN Pain, vol. 2013, Article ID 640690, 19 pages, doi:10.1155/2013/640690.
  24. SNOMED CT, The Global Language of Healthcare, IHTSDO, http://www.ihtsdo.org/snomed-ct, Nov 8 2015.
  25. Staal, J. B., Hendriks, E. J. M. , Heijmans, M., Kiers, H., Lutgers-Boomsma, A. M. , Rutten, G., van Tulder, M. W., Den Boer, J., Ostelo, R. and Custers, J. W. H., 2013. KNGF-richtlijn lage rugpijn, Koninklijk Nederlands Genootschap voor Fysiotherapie, De Gans. Amersfoort, The Netherlands (Dutch).
  26. Swinkels, I. C. S., Kooijman, M. K., Spreeuwenberg, P. M., Bossen, D., Leemrijse, C. J., van Dijk, C. E., Verheij, R., de Bakker, D. H., and Veenhof, C., 2014. An overview of 5 years of patient self-referral for physical therapy in the Netherlands. Physical Therapy, 94(12), 1985-1995.
  27. Taylor, B. J., 2006. Factorial surveys: Using vignettes to study professional judgement. British Journal of Social Work, 36(7), 1187-1207.
  28. Ung, H., Brown, J. E., Johnson, K. A., Younger, J., Hush, J. and Mackey, S., 2012. Multivariate classification of structural MRI data detects chronic low back pain, Cerebral cortex, bhs378.
  29. Weiner, S. S., and Nordin, M., 2010. Prevention and management of chronic back pain. Best Practice & Research Clinical Rheumatology, 24(2), 267-279.
Download


Paper Citation


in Harvard Style

Nijeweme-d'Hollosy W., van Velsen L., Soer R. and Hermens H. (2016). Design of a Web-based Clinical Decision Support System for Guiding Patients with Low Back Pain to the Best Next Step in Primary Healthcare . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 229-239. DOI: 10.5220/0005662102290239


in Bibtex Style

@conference{healthinf16,
author={Wendy Oude Nijeweme-d'Hollosy and Lex van Velsen and Remko Soer and Hermie Hermens},
title={Design of a Web-based Clinical Decision Support System for Guiding Patients with Low Back Pain to the Best Next Step in Primary Healthcare},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)},
year={2016},
pages={229-239},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005662102290239},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)
TI - Design of a Web-based Clinical Decision Support System for Guiding Patients with Low Back Pain to the Best Next Step in Primary Healthcare
SN - 978-989-758-170-0
AU - Nijeweme-d'Hollosy W.
AU - van Velsen L.
AU - Soer R.
AU - Hermens H.
PY - 2016
SP - 229
EP - 239
DO - 10.5220/0005662102290239