Kinect V2 for Upper Limb Rehabilitation Applications - A Preliminary Analysis on Performance Evaluation

Giorgia Lupinacci, Gianluca Gatti, Agostino Angilica, Maurizio Muzzupappa

Abstract

Many systems have been developed to facilitate upper limb rehabilitation procedures in human subjects affected by trauma or pathologies and to retrieve information about patient performance. The Microsoft Kinect sensor can be used in this context to track body motion and detect objects. In order to evaluate the usability of this device in the upper limb rehabilitation field, a comparison with a marker-based system is presented in this paper. The upper limb motion is specifically considered and the performance on its detection and tracking is evaluated. The effect of the relative location between the Kinect and the observed subject is also investigated through experimental tests performed in different configurations.

References

  1. Asín Prieto G., Cano-de-la-Cuerda R., López-Larraz E., Metrot J., Molinari M., van Dokkum, L. E. H., 2014. Emerging Perspectives in Stroke Rehabilitation. In Emerging Therapies in Neurorehabilitation Biosystems & Biorobotics, vol. 4, pp 3-21. SPRINGER.
  2. Beucher, S., 1992. The watershed transformation applied to image segmentation. In Scanning MicroscopySupplement-, pp 299-299.
  3. Bonnechère, B., Jansen, B., Salvia, P., Bouzahouene, H., Omelina, L., Moiseev, F., Sholukha, V., Cornelis, J., Van Sint Jan, S., 2014. Validity and reliability of the Kinect within functional assessment activities: Comparison with standard stereophotogrammetry. In Gait & Posture, vol. 39, no.1, pp 593 - 598. ELSEVIER.
  4. Burke, J. W., McNeill, M. D. J., Charles, D. K., Morrow, P. J., Crosbie, J. H., McDonough, S. M., 2009. Optimising engagement for stroke rehabilitation using serious games. In The Visual Computer, vol.12, no. 25, pp 1085-1099. SPRINGER.
  5. Carse, B., Meadows, B., Bowers, R., Rowe, P., 2013. Affordable clinical gait analysis: An assessment of marker tracking accuracy of a new low-cost optical 3D motion analysis system. In Physiotherapy, vol. 99, no. 4, pp347-351. ELSEVIER.
  6. Chang,C.-Y., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchunk, A.A., Rizzo, A.A., 2012. Toword pervasive physical rehabilitation using Microsoft Kinect. In 2012 6th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, PervasiveHealth 2012, pp 159-162.
  7. Clark, R.A., Pua, Y., Fortin, K., Ritchie C., Webster, K.E., Denehy, L., Bryant, A.L., 2012. Validity of the Microsoft Kinect for assessment of postural control. In Gait & Posture, vol. 36, no.3, pp 372-577. ELSEVIER.
  8. Diego-Mas, J. A., Alcaide-Marzal, J., 2014. Using KinectTM sensor in observational methods for assessing postures at work. Applied Ergonomics, vol. 45, no.4, pp 976 - 985. ELSEVIER.
  9. Frisoli, A., Procopio, C., Chisari, C., Creatini, I., Bonofiglio, L., Bergamasco, M., Rossi, B., Carboncini, M. C., 2012. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. In Journal of Neuroengineering and Rehabilitation, vol. 9, no. 36. BioMed Central.
  10. Kinect for Windows features. Available from: https://www.microsoft.com/enus/kinectforwindows/m eetkinect/features.aspx [3August 2015]
  11. Lachat, E., Macher, H., Mittet M. A., Landes, T., Grussenmeyer, P., 2015. First experiences with Kinect v2 sensor for close range 3D modelling. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volum XL-5/W4.
  12. Lam, P., Hebert, D., Boger, J., Lacheray, H., Gardner, D., Apkarian, J., Mihailidis, A., 2008. A haptic-robotic platform for upper-limb reaching stroke therapy: preliminary design and evaluation results. In Journal of Neuroengineering and Rehabilitation, vol. 5, no. 15. BioMed Central.
  13. Lange, B., Chang, C., Suma, E., Newman, B., Rizzo, A., Bolas, M., 2011. Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp 1831-1834. IEEE.
  14. Mihelj, M., 2006. Human Arm Kinematics for Robot Based Rehabilitation. In Robotica, vol. 24, no. 3, pp 377-383. CAMBRIDJE UNIVERSITY PRESS.
  15. Moeslund, T. B., Hilton, A., & Krüger, V., 2006. A survey of advances in vision-based human motion capture and analysis. In Computer vision and image understanding, vol. 104, no. 2, pp 90-126. ELSEVIER.
  16. Natural Point, 2015. Inc.: Optitrack-optical motion tracking solutions. Available from: https:// www.naturalpoint.com/.
  17. Pimentel do Rosàrio, J.L., 2014. Biomechanical assessment of human posture: A literature review. In Journal of Bodywork and Movement Therapies, vol.18, no. 3, pp 368-373. ELSEVIER.
  18. Van Diest, M., Stegenga, J., Heinrich, J.W., Postema K., Verkerke, G. J., Lamoth, C. J. C., 2014. Suitability of Kinect for measuring whole body movement patterns during exergaming. Journal of Biomechanics, vol. 47, no.12, pp 2925 - 2932. ELSEVIER.
  19. Volpe, B. T., Lynch, D., Rykman-Berland, A., Ferraro, M., Galgano, M., Hogan, N., Krebs, H.I., 2008. Intensive Sensorimotor Arm Training Mediated by Therapist or Robot Improves Hemiparesis in Patients With Chronic Stroke. In Neurorehabilitation & Neural Repair, vol. 22, no. 3, pp 305-310. SAGE.
  20. Xu, X., McGorry, R. W., 2015. The validity of the first and second generation Microsoft KinectTM for identifying joint center locations during static postures. In Applied Ergonomics, vol. 49, pp 47 - 54. ELSEVIER.
  21. Zhou, H., Hu, H., 2008. Human motion tracking for rehabilitation-A survey. In Biomedical Signal Processing and Control, vol.3, no. 1, pp 1-18. ELSEVIER.
Download


Paper Citation


in Harvard Style

Lupinacci G., Gatti G., Angilica A. and Muzzupappa M. (2016). Kinect V2 for Upper Limb Rehabilitation Applications - A Preliminary Analysis on Performance Evaluation . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 131-138. DOI: 10.5220/0005659201310138


in Bibtex Style

@conference{biodevices16,
author={Giorgia Lupinacci and Gianluca Gatti and Agostino Angilica and Maurizio Muzzupappa},
title={Kinect V2 for Upper Limb Rehabilitation Applications - A Preliminary Analysis on Performance Evaluation},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)},
year={2016},
pages={131-138},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005659201310138},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)
TI - Kinect V2 for Upper Limb Rehabilitation Applications - A Preliminary Analysis on Performance Evaluation
SN - 978-989-758-170-0
AU - Lupinacci G.
AU - Gatti G.
AU - Angilica A.
AU - Muzzupappa M.
PY - 2016
SP - 131
EP - 138
DO - 10.5220/0005659201310138