An Algorith to Derive Transfer Function Coefficients for an Auditory Filterbank from Experimental Tuning Curves

Thomas Ostermann

Abstract

Auditory processing is one of the most complex and fundamental tasks in human psychophysiology. In the past 150 years researchers have tried to understand how sound and especially speech is processed in the human ear. Today, digital auditory filter models and nonlinear active silicon cochlea models are used to simulate cochlear sound processing. This article therefore aims at describing a simple algorithm to derive transfer functions coefficients for an auditory filterbank from tuning curves. Based on the model of the basilar membrane as a cascade of second order lowpass filters, the transfer functions are adopted to experimental data of tuning curves in the cochlea. With basic information on the shape of the travelling waves the presented algorithm is able to derive transfer function coefficients for an auditory filterbank. After the algorithm is explained this article shows how to use it in the presence of experimental data, and gives an application to a an operational amplifier filter circuit using active compensation.

References

  1. Aher, P., & Cheeran, A., 2014. Auditory Processing of Speech Signals for Speech Emotion Recognition. International Journal of Advanced Research in Computer and Communication Engineering, 3(5), 6790-93.
  2. Cosentino, S., Falk, T. H., McAlpine, D., & Marquardt, T., 2014. Cochlear implant filterbank design and optimization: A simulation study. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2), 347-353.
  3. David, E., 1972. Elektronisches Analogmodell der Verarbeitung akustischer Information in Organismen, Habil.-Schrift, Universität Erlangen.
  4. Elliott, S. J., Shera, C. A., 2012. The cochlea as a smart structure. Smart Materials and Structures, 21(6), 064001.
  5. Furth, P.M., Andreou, A.G., 1995. A Design Framework for Low Power Analog Filter Banks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(11), 966-971.
  6. Harlander, N., Huber, R., & Ewert, S. D., 2014. Sound Quality Assessment Using Auditory Models. Journal of the Audio Engineering Society, 62(5), 324-336.
  7. Hohenberg, G., Reiss, G., Ostermann, T., 2016. An interactive digital platform for teaching auditory physiology using two classes of electronic basilare membrane models. HEALTHINF 2016 - Proceedings of the International Conference on Health Informatics.
  8. Lyon, R. F., Katsiamis, A. G., Drakakis, E. M., 2010. History and future of auditory filter models. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium: 3809-3812.
  9. Katsiamis, A., Drakakis E., Lyon R.F., 2009. A biomimetic, 4,5W, 120+dB, log-domain cochlea channel with ACG. IEEE Journal of Solid-State Circuits, 44(3), 1006-1022.
  10. Katsiamis, A., Drakakis E., 2011. Analogue CMOS cochlea systems: A historic retrospective", Biomimetic Based Applications, InTech, available from http://www. intechopen.com/books/biomimetic based-applications/ analogue-cmos-cochlea-systems-a-historicretrospective, 2011.
  11. Mohan, P. A., 2013. Active RC Filters Using Opamps. In VLSI Analog Filters. Birkhäuser Boston: 13-146.
  12. Ostermann, T., 1995. Parameterbestimmung zur Modellierung der Schallwirkung in der Cochlea mittels elektronischer Bauteile. Diplomarbeit im Fachbereich Mathematik der University of Osnabrück.
  13. Ostermann, T., Zielke, R., David, E., 2002. Eine mathematisch-technische Modellierung von passiven und aktiven Schwingungsformen der Basilarmembran. Biomedical Engineering, 47(1-2), 14-19.
  14. Peterson, L., Bogert, B., 1950. A dynamical theory of the cochlea. JASA 22, 369-381.
  15. Ranke, O.F., 1950. Hydrodynamik der Schneckenflüssigkeit, Zs. f. Biol. 103, 409-434.
  16. Richter, A.,1976. Ein Funktionsmodell zur Beschreibung der amplitudenabhängigen selektiven Eigenschaften des Gehörs. Dissertation, TU München.
  17. Von Békésy, G., 1944. Über die mechanische Frequenzanalyse in der Schnecke verschiedener Tiere. Akust. Z., 9, 3-11.
  18. Von Helmholtz, H. , 1865. Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Vieweg, Braunschweig.
  19. Wen, B., 2006. Modeling the nonlinear active cochlea. Doctoral dissertation, University of Pennsylvania.
  20. Wien, M., 1905. Ein Bedenken gegen die Helmholtzsche Resonanztheorie des Hörens. In: Festschrift Adolph Wüllner gewidmet zum 70. Geburtstage. Teubner, Leipzig: 28-35.
  21. Zimmermann, P., 1993. Entwicklungslinien der Hörtheorie. NTM International Journal of History & Ethics of Natural Sciences, Technology & Medicine, 1(1), 19-36.
Download


Paper Citation


in Harvard Style

Ostermann T. (2016). An Algorith to Derive Transfer Function Coefficients for an Auditory Filterbank from Experimental Tuning Curves . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 194-199. DOI: 10.5220/0005657001940199


in Bibtex Style

@conference{healthinf16,
author={Thomas Ostermann},
title={An Algorith to Derive Transfer Function Coefficients for an Auditory Filterbank from Experimental Tuning Curves},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)},
year={2016},
pages={194-199},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005657001940199},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)
TI - An Algorith to Derive Transfer Function Coefficients for an Auditory Filterbank from Experimental Tuning Curves
SN - 978-989-758-170-0
AU - Ostermann T.
PY - 2016
SP - 194
EP - 199
DO - 10.5220/0005657001940199