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Abstract: Auditory processing is one of the most complex and fundamental tasks in human psychophysiology. In the 
past 150 years researchers have tried to understand how sound and especially speech is processed in the human 
ear. Today, digital auditory filter models and nonlinear active silicon cochlea models are used to simulate 
cochlear sound processing. This article therefore aims at describing a simple algorithm to derive transfer 
functions coefficients for an auditory filterbank from tuning curves. Based on the model of the basilar 
membrane as a cascade of second order lowpass filters, the transfer functions are adopted to experimental 
data of tuning curves in the cochlea. With basic information on the shape of the travelling waves the presented 
algorithm is able to derive transfer function coefficients for an auditory filterbank. After the algorithm is 
explained this article shows how to use it in the presence of experimental data, and gives an application to a 
an operational amplifier filter circuit using active compensation.  

1 INTRODUCTION 

Auditory processing is one of the most complex and 
fundamental tasks in human psychophysiology.  In 
the past 150 years researchers have tried to 
understand how sound and especially speech is 
processed in the human ear. While Helmholtz in his 
book “On the sensations of tone as a physiological 
basis for the theory of music” proposed a resonance 
concept (Helmholtz, 1868), his idea was contradicted 
by Wien (Wien, 1905), who stated that high 
selectivity and high damping of the ear could 
anatomically not be realized in the cochlea. On the 
experimental site, von Bekesy found that frequency-
to-place transformation in the cochlea was not caused 
by resonance but by traveling waves on the basilar 
membrane (von Zimmermann, 1993; Ostermann et 
al., 2002). In a variety of experiments on animal ears 
post mortem von Bekesy measured the displacement 
of the basilare membrane in a prepared cochlea for 
tonal stimuli and displayed them as a function of 
frequency  with the maximal displaced normalized as 
100% displacement (see Fig. 1 for an original graph 
from Bekesy, 1944 and  Fig. 2 for a schematic 
drawing of the cochlea). 

Mathematical modeling approaches like the  
transmission-line models Peterson and Bogert 

(Peterson and Bogert, 1950) or the hydrodynamical 
model of Ranke (Ranke, 1950) very early proposed 
the use of electronic filters for simulating cochlea 
mechanics and finally led to the concept to model the 
basilar membrane as a  cascade of filters. 

 
Figure 1: Normalized travelling waves on the basilare 
membrane of the guinea pig (from Bekesy, 1944). 

 
Figure 2: Schematic drawing and inner ear dynamics of the 
Cochlea (from Wen, 2006). 

A non-logartithmic modeling approach for the 
tuning curves is given in Fig. 3, while Fig. 4 gives 
values for the renomalization of the travelling waves 
in Fig 1.  
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Several electronical models adopted the idea of a 
filterbank to model the the cochlea. In 1972 David 
presented a analogue lowpass filterbank of 64 
cascaded 2nd order lowpass filters (David, 1972). A 
similar model was constructed by Richter in 1977 
which in addition contained electronical circuits to 
simulate activen backcoupling in the basilare 
membrane (Richter, 1977).  

 
Figure 3: Modeling approach for a normalized tuning curve 
h(Ω). Ω denotes the normalized frequency with respect to 
fmax (from Ostermann,1995). 

 
Figure 4: Renomalization r(f) of the tuning curves (from 
Ostermann,1995). 

Today, digital auditory filter models have 
replaced analogue filters and nonlinear active silicon 
cochlea models are created using very large scale 
integration (VLSI) to simulate cochlear sound 
processing (Lyon et al., 2010; Katsiamis and 
Drakakis, 2011). They are used in a variety of areas, 
i.e. in the assessment of sound quality (Harlander et 
al., 2014), for cochlea implants (Cosentino et al., 
2014), the recognition and analysis of speech emotion 
recognition (Aher and Cheeran, 2014). 

However the question still remains how to 
determine the filter coefficients from the basis of 
tuning curve data such as given in Fig 1.   

This article describes therefore aim at describing 
a simple and straightforward algorithm to derive 
transfer    functions    coefficients    for    a    auditory 

filterbank from tuning curves.  

2 MATERIAL AND METHODS 

We first define fmax as that frequency in which the 
amplitude of the basilare membrane has its 
maximum. Then 

maxf
f=Ω denotes the normalized 

frequency with respect to fmax. Keeping in mind the 
frequency-to-place transformation in the cochlea, 
every frequency f is mapped to a unique place on the 
basilare membrane.  

Next the transfer function for a lowpass according 
to (Furth and Andreou, 1995) is defined by 
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Let h(ΩN) now denote the Nth function of the 
tuning curve given in figure 1 and r(fgN) denote the 
renormalisation function for the peak of the tuning 
curves (see figures 3 and 4), we can write the Nth and 
(N+1)th renormalized tuning curve as a product of 
lowpass filters: 
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To obtain the transfer function of the (N+1)th lowpass 
filter, we then get: 
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To ease the next calculations and without loss of 
generality, α is set to 1 in the following calculations. 

Next it is required that location and value of the 
maximum of )( 1+ΩNH  correspond to the respective 
values of 
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By calculating the first derivate ')(ΩH , and equate 
it to zero, we get 
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Finally |H(Ω)| for Ω=1 can be derived from the right 
side of (2) and thus using (1) we have 
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By substituting and solving equations (5) to (7), the 
remaining parameters can now be obtained. To 
simplify the equations, we define the following 
parameters: 
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given in table 1:

Table 1: Algorithm to determine the coefficients of the 
transfer function. 
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3 RESULTS 

The algorithm is now applied to experimental data. 
Therefore the functions for h(Ω) and r(f) from Fig. 3 
and Fig.4 have to be given explicitly. In (Ostermann, 
1995) a nonlinear regression model was applied to the 
experimental data and found the following equation: 
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Using (8) we get 
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A model fit with this algorithm for fg = 200Hz is 
shown in Fig. 5.  

 
Figure 5: Original curve (solid line) and model fit (dotted 
line) for fg=200Hz. 
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As can be seen the fitting quality is not sufficient 
in the stopband region of the filter. Therefore, we 
modified the algorithm given in table 1 with respect 
to the parameter a:  

),1(Ψ⋅= ξa  with ξ ∈[0,1] 

For every ξ the parameters ß2, γ and ε2 are 
calculated. In addition, the integral  
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which defines the area between the two curves in Fig. 
5 is numerically minimized and that value of ξ is 
chosen which minimizes the integral. Table 2 
summarizes the results with respect to the cut-off 
frequency fg: 

Table 2: Parameters of int, ξ, β2.γ, ε2 and α for cut-off 
frequencies fg between 200 and 3150Hz. 

 

To illustrate the results, Fig. 6 shows the original 
curve and the model fit for the cut-off frequencies 
200Hz, 1480Hz and 2700Hz.  

The agreement of model fit and empirical data 
increases with increasing cut off frequency. For a 
transfer function H(s) with s=iΩ 
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the coefficients  β2.γ, ε2 and α given in Table 2 
can easily be transformed. The respective values are 
given in table 3. 

Now, the coefficients for designing the filters are 
given and can be applied to filter circuits using i.e. 
operational amplifiers (OPAMS). 

 

 

 
Figure 6: Original curve (solid line) and model fit (dotted 
line) for fg=200Hz, 1480Hz and 2700Hz (top to down). 

Table 3: Parameters of 1010
~~,~,~ bandbaa for cut-off 

frequencies fg between 200 and 3150Hz. 
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Figure 7: Example of a filter circuit using active 
compensation from (Mohan, 2013). 

The transfer function of this filter is given by 

)1(1
1

)(
1

2

21

2

2

2

1

2

R
R

BB
s

B
s

B
s

R
RsH

+++
+

−=  

where R1 and R2 are the resistor values and B1 and B2 
denote the unity gain bandwidths of the OPAMS. 

4 CONCLUSIONS 

Auditory filterbanks to simulate the cochlea have a 
long history dating back to the 1950th. This article 
presents an algorithm to derive transfer functions for 
an auditory filterbank from experimental tuning 
curves. Based on experimental data, tuning curves 
were mathematically modelled and after some 
transformations the coefficients of the transfer 
function can be determined and be realized either in 
analogue or digital filters. 

Apart from the analysis of sound, such models can 
also provide useful insights for students in the field of 
auditory physiology i.e. to simulate patients’ hearing 
loss. Such a system has actually been realized by 
means of digital filters (Hohenberg et al., 2016). 

This approach has also its limitations. It is based 
on the assumption that tuning curves and frequency-
to-place transformation in the cochlea can be 
modelled by a simple exponential approach. We also 
assumed that the shape of the tuning curves does not 
change. However, as Lyon et al., (2010) have pointed 
out, physiological data show a filter shape 
asymmetry. Finally this approach only models the 
passive part of the cochlea. However there is also an 
active back coupling which is not part of this 
algorithm and has to be integrated by means of 
positive feedback loop circuits (Ostermann, 2002; 
Katsiamis et al., 2009; Elliott and Shera, 2012). Thus, 
more extensive experimental analysis is needed to 
validate the proposed algorithm. 

However, if data can be modelled like in the 
present article, this algorithm can be a part of a 
straight  forward  approach  to  establish  an  auditory 

filterbank.  
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