Towards Flexibility in Business Processes by Mining Process Patterns and Process Instances

Andreas Bögl, Andreas Bögl, Christine Natschläger, Christine Natschläger, Verena Geist, Verena Geist


The possibility to react to unexpected situations in business process execution is restricted since all possible process flows must be specified at design-time. Thus, there is need for a flexible approach that reflects the way in which human actors would handle discrepancies between real-life activities and their representation in business process definitions. In this paper, we propose a novel approach that supports dynamic business processes and is based on a framework comprising a process pattern library with domain-specific patterns and execution logs for mining related process instances. Given a running business process and an unexpected situation, the proposed approach provides a largely automatic adaptation of the business process by replacing failed activities with fitting process alternatives identified by exploring existing process knowledge. The feasibility of the approach is demonstrated by applying the main steps to a business scenario taken from the industry domain.


  1. Adams, M., ter Hofstede, A., van der Aalst, W., and Edmond, D. (2007). Dynamic, extensible and contextaware exception handling for workflows. In OTM'07, pages 95-112. Springer.
  2. Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., and Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17):13051-13069.
  3. Bögl, A., Karlinger, M., Schütz, C., Schrefl, M., and Pomberger, G. (2015). Exploiting semantic activity labels to facilitate consistent specialization of abstract process activities. In SOFSEM 2015: Theory and Practice of Computer Science, pages 475-485.
  4. Bögl, A., Natschläger, C., Karlinger, M., and Schrefl, M. (2014). Exploiting process patterns and process instances to support adaptability of dynamic business processes. In DEXA 2014, pages 173-177. CPS.
  5. Bögl, A., Schrefl, M., Pomberger, G., and Weber, N. (2009). Automated construction of process goal trees from EPC-models to facilitate extraction of process patterns. In ICEIS 2009, pages 427-442.
  6. Cruz, C., González, J., and Pelta, D. (2011). Optimization in dynamic environments: a survey on problems, methods and measures. Soft Computing, 15(7):1427- 1448.
  7. Deb, K. (2014). Multi-objective optimization. In Search Methodologies, pages 403-449. Springer US.
  8. Dixon, J. and Jones, T. (2011). Hype cycle for business process management. Technical Report G00214214, Gartner.
  9. Doehring, M. and Zimmermann, B. (2011). vBPMN: Event-aware workflow variants by weaving BPMN2 and business rules. In Enterprise, Business-Process and Information Systems Modeling, volume 81 of LNBIP, pages 332-341. Springer.
  10. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., and Shan, M.-C. (2004). Business process intelligence. Computers in Industry, 53(3):321-343.
  11. Hallerbach, A., Bauer, T., and Reichert, M. (2010). Capturing variability in business process models: The Provop approach. Journal of Software Maintenance and Evolution: Research and Practice, 22(6 & 7):519-546.
  12. Hartmann, S. and Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. EJOR, 207(1):1-14.
  13. Krampe, D. and Lusti, M. (1997). Case based reasoning for information system design. In ICCBR, pages 63-73.
  14. la Rosa, M., van der Aalst, W., Dumas, M., and Milani, F. (2013). Business process variability modeling: A survey. Technical report, QUT.
  15. Ly, L. T., Rinderle-Ma, S., G öser, K., and Dadam, P. (2012). On enabling integrated process compliance with semantic constraints in process management systems. Information Systems Frontiers, 14(2):195-219.
  16. Malone, T., Crowston, K., Lee, J., Pentland, B., Dellarocas, C., Wyner, G., Quimby, J., Osborn, C., Bernstein, A., Klein, M., and O'Donnell, E. (1999). Towards a handbook of organisational processes. Magement Science, 45(3):425-443.
  17. Meseguer, P., Rossi, F., and Schiex, T. (2006). Soft constraints. In Rossi, F., Van Beek, P., and Walsh, T., editors, Handbook of constraint programming, pages 281-328. Elsevier.
  18. Natschläger, C., B ögl, A., and Geist, V. (2014). Optimizing resource utilization by combining running business process instances. In ICSOC 2014 workshops and satellite events, LNCS, pages 120-126. Springer.
  19. Natschläger, C., Bögl, A., Geist, V., and Biro, M. (2015). Optimizing resource utilization by combining activities across process instances. In European & Asian System, Software & Service Process Improvement & Innovation, LNCS, pages 155-167. Springer.
  20. Pesic, M., Schonenberg, M. H., Sidorova, N., and Van Der Aalst, W. M. P. (2007). Constraint-based workflow models: Change made easy. In OTM'07, pages 77-94. Springer.
  21. Reichert, M. and Weber, B. (2012). Enabling Flexibility in Process-Aware Information Systems - Challenges, Methods, Technologies. Springer.
  22. Russell, N., van der Aalst, W., and ter Hofstede, A. (2006). Workflow exception patterns. In CAiSE'06, pages 288-302. Springer.
  23. Sadiq, S. W., Orlowska, M. E., and Sadiq, W. (2005). Specification and validation of process constraints for flexible workflows. Inf. Syst., 30(5):349-378.
  24. Schulze, D. (2001). Grundlagen der wissensbasierten Konstruktion von Modellen betrieblicher Systeme. Shaker Verlag.
  25. Thom, L. H., Reichert, M., Chiao, C. M., Iochpe, C., and Hess, G. N. (2008). Inventing less, reusing more, and adding intelligence to business process modeling. In DEXA, pages 837-850.
  26. Tzeng, G.-H. and Huang, J.-J. (2011). Multiple attribute decision making: methods and applications. CRC Press.
  27. van der Aalst, W. M. and Weijters, A. J. M. M. (2005). Process Aware Information Systems: Bridging People and Software Through Process Technology, chapter Process Mining. Wiley-Interscience.
  28. van der Aalst, W. M. P. (2011). Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer Publishing Company.
  29. van der Aalst, W. M. P., van Dongena, B. F., Herbst, J., Marustera, L., Schimm, G., and Weijters, A. J. M. M. (2003). Workflow mining: A survey of issues and approaches. Data & Knowledge Eng., 47:237-267.
  30. Wen, L., Wang, J., and Sun, J.-G. (2006). Detecting implicit dependencies between tasks from event logs. In APWeb, volume 3841 of LNCS, pages 591-603. Springer.
  31. Zimmermann, H.-J. and Gutsche, L. (1991). Multi-Criteria Analyse. Springer.

Paper Citation

in Harvard Style

Bögl A., Natschläger C. and Geist V. (2016). Towards Flexibility in Business Processes by Mining Process Patterns and Process Instances . In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD, ISBN 978-989-758-168-7, pages 469-476. DOI: 10.5220/0005652704690476

in Bibtex Style

author={Andreas Bögl and Christine Natschläger and Verena Geist},
title={Towards Flexibility in Business Processes by Mining Process Patterns and Process Instances},
booktitle={Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,},

in EndNote Style

JO - Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,
TI - Towards Flexibility in Business Processes by Mining Process Patterns and Process Instances
SN - 978-989-758-168-7
AU - Bögl A.
AU - Natschläger C.
AU - Geist V.
PY - 2016
SP - 469
EP - 476
DO - 10.5220/0005652704690476