SynapCountJ: A Tool for Analyzing Synaptic Densities in Neurons

Gadea Mata, Jónathan Heras, Miguel Morales, Ana Romero, Julio Rubio

Abstract

The quantification of synapses is instrumental to measure the evolution of synaptic densities of neurons under the effect of some physiological conditions, neuronal diseases or even drug treatments. However, the manual quantification of synapses is a tedious, error-prone, time-consuming and subjective task; therefore, tools that might automate this process are desirable. In this paper, we present SynapCountJ, an ImageJ plugin, that can measure synaptic density of individual neurons obtained by immunofluorescence techniques, and also can be applied for batch processing of neurons that have been obtained in the same experiment or using the same setting. The procedure to quantify synapses implemented in SynapCountJ is based on the colocalization of three images of the same neuron (the neuron marked with two antibody markers and the structure of the neuron) and is inspired by methods coming from Computational Algebraic Topology. SynapCountJ provides a procedure to semi-automatically quantify the number of synapses of neuron cultures; as a result, the time required for such an analysis is greatly reduced.

References

  1. Cuesto, G., Enriquez-Barreto, L., Caramés, C., et al. (2011). Phosphoinositide-3-kinase activation controls synaptogenesis and spinogenesis in hippocampal neurons. Journal of Neuroscience, 31(8):2721-2733.
  2. Cuesto, G., Jordán- Ílvarez, S., Enriquez-Barreto, L., et al. (2015). GSK3ß inhibition Promotes Synaptogenesis in Drosophila and Mammalian Neurons. PlosOne, 10(3). doi=10.1371/journal.pone.0118475.
  3. Danielson, E. and Lee, S. H. (2014). SynPAnal: Software for Rapid Quantification of the Density and Intensity of Protein Puncta from Fluorescence Microscopy Images of Neurons. PLoS ONE, 9(12). doi=10.1371/journal.pone.0115298.
  4. DaRocha-Souto, B., Scotton, T. C., Coma, M., et al. (2003). Brain oligomeric ß-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice. Journal of Neuropathology & Experimental Neurology, 70(5):360-376.
  5. Devices, M. (2015). Metamorph research imaging. http://www.moleculardevices.com/systems/meta morph-research-imaging.
  6. Franco, B., Bogdanik, L., Bobinnec, Y., et al. (2004). Shaggy, the homolog of glycogen synthase kinase 3, controls neuromuscular junction growth in Drosophila. Journal of Neuroscience, 24(29):6573- 6577.
  7. González-Díaz, R. and Real, P. (2005). On the Cohomology of 3D Digital Images. Discrete Applied Mathematics, 147(2-3):245-263.
  8. Linkert, M., Rueden, C. T., Allan, C., et al. (2010). Metadata matters: access to image data in the real world. The Journal of Cell Biology, 189(5):777-782.
  9. Meijering, E., Jacob, M., Sarria, J. C. F., et al. (2004). Design and Validation of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images. Cytometry Part A, 58(2):167-176.
  10. Schindelin, J., Argand-Carreras, I., Frise, E., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature methods, 9(7):676-682.
  11. Schmitz, S. K., Hjorth, J. J. J., Joemail, R. M. S., et al. (2011). Automated analysis of neuronal morphology, synapse number and synaptic recruitment. Journal of Neuroscience Methods, 195(2):185-193.
  12. Schneider, C., Rasband, W., and Eliceiri, K. (2012). NIH Image to ImageJ. Nature Methods, 9:671-675.
  13. Ségonne, F., Grimson, E., and Fischl, B. (2003). Topological Correction of Subcortical Segmentation. In Proceedings of the 6th International conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'03), volume 2879 of Lecture Notes in Computer Science, pages 695-702.
  14. Selkoe, D. J. (2002). Alzheimer's diseases is a synaptic failure. Science, 298(5594):789-791.
  15. Shiwarski, D. J., Dagda, R. D., and Chu, C. T. (2014). Green and red puncta colocalization. http://imagejdocu.tudor.lu/doku.php?id=plugin:analy sis:colocalization analysis macro for red and green puncta:start.
  16. Wark, B. (2013). Puncta analyzer v2.0. https://github.com/ physion/puncta-analyzer.
Download


Paper Citation


in Harvard Style

Mata G., Heras J., Morales M., Romero A. and Rubio J. (2016). SynapCountJ: A Tool for Analyzing Synaptic Densities in Neurons . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 25-31. DOI: 10.5220/0005637700250031


in Bibtex Style

@conference{bioimaging16,
author={Gadea Mata and Jónathan Heras and Miguel Morales and Ana Romero and Julio Rubio},
title={SynapCountJ: A Tool for Analyzing Synaptic Densities in Neurons},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2016)},
year={2016},
pages={25-31},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005637700250031},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2016)
TI - SynapCountJ: A Tool for Analyzing Synaptic Densities in Neurons
SN - 978-989-758-170-0
AU - Mata G.
AU - Heras J.
AU - Morales M.
AU - Romero A.
AU - Rubio J.
PY - 2016
SP - 25
EP - 31
DO - 10.5220/0005637700250031