Intuitionistic De Morgan Verification and Falsification Logics

Norihiro Kamide

Abstract

In this paper, two new logics called intuitionistic De Morgan verification logic DV and intuitionistic De Morgan falsification logic DF are introduced as a Gentzen-type sequent calculus. The logics DV and DF have De Morgan-like laws with respect to implication and co-implication. These laws are analogous to the well-known De Morgan laws with respect to conjunction and disjunction. On the one hand, DV can appropriately represent verification (or justification) of incomplete information, on the other hand DF can appropriately represent falsification (or refutation) of incomplete information. Some theorems for embedding DV into DF and vice versa are shown. The cut-elimination theorems for DV and DF are proved, and DV and DF are also shown to be paraconsistent and decidable.

References

  1. Almukdad, A. and Nelson, D. (1984). Constructible falsity and inexact predicates. Journal of Symbolic Logic, 49:231-233.
  2. Czermak, J. (1977). A remark on gentzen's calculus of sequents. Notre Dame Journal of Formal Logic, 18:471- 474.
  3. Goodman, N. (1981). The logic of contradiction. Z. Math. Logik Grundlagen Math., 27:119-126.
  4. Gurevich, Y. (1977). Intuitionistic logic with strong negation. Studia Logica, 36:49-59.
  5. Kamide, N. and Wansing, H. (2010). Symmetric and dual paraconsistent logics. Logic and Logical Philosophy, 19 (1-2):7-30.
  6. Kamide, N. and Wansing, H. (2012). Proof theory of nelson's paraconsistent logic: A uniform perspective. Theoretical Computer Science, 415:1-38.
  7. Kamide, N. and Wansing, H. (2015). Proof theory of N4- related paraconsistent logics, Studies in Logic 54. College Publications.
  8. Nelson, D. (1949). Constructible falsity. Journal of Symbolic Logic, 14:16-26.
  9. Priest, G. (2002). Paraconsistent logic, Handbook of Philosophical Logic (Second Edition), Vol. 6, D. Gabbay and F. Guenthner (eds.). Kluwer Academic Publishers, Dordrecht, pp. 287-393.
  10. Rautenberg, W. (1979). Klassische und nicht-klassische Aussagenlogik. Vieweg, Braunschweig.
  11. Shramko, Y. (2005). Dual intuitionistic logic and a variety of negations: The logic of scientific research. Studia Logica, 80 (2-3):347-367.
  12. Urbas, I. (1996). Dual-intuitionistic logic. Notre Dame Journal of Formal Logic, 37:440-451.
  13. Vorob'ev, N. (1952). A constructive propositional calculus with strong negation (in Russian). Doklady Akademii Nauk SSR, 85:465-468.
  14. Wansing, H. (1993). The logic of information structures. In Lecture Notes in Computer Science, volume 681, pages 1-163.
Download


Paper Citation


in Harvard Style

Kamide N. (2016). Intuitionistic De Morgan Verification and Falsification Logics . In Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-172-4, pages 233-240. DOI: 10.5220/0005629902330240


in Bibtex Style

@conference{icaart16,
author={Norihiro Kamide},
title={Intuitionistic De Morgan Verification and Falsification Logics},
booktitle={Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2016},
pages={233-240},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005629902330240},
isbn={978-989-758-172-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Intuitionistic De Morgan Verification and Falsification Logics
SN - 978-989-758-172-4
AU - Kamide N.
PY - 2016
SP - 233
EP - 240
DO - 10.5220/0005629902330240