Epileptic Seizure Prediction in Scalp EEG using One Dimensional Local Binary Pattern based Features

Thasneem Fathima, Paul Joseph K., M. Bedeeuzzaman

Abstract

Seizure prediction will deeply improve the quality of life of epileptic patients. In this paper, a new method of automatic seizure prediction is presented using one dimensional local binary pattern (1D-LBP) based features in scalp electroencephalogram (EEG). In the feature extraction stage, the preictal and interictal EEG signals were transformed to the 1D-LBP domain and histogram features were extracted. These features were submitted to two different types of classifiers: linear discriminant analysis (LDA) and support vector machine (SVM). In order to reduce the false prediction rate (FPR), a simple post processing stage was also incorporated. The classification using SVM showed improvement over LDA in terms of sensitivity, prediction time and FPR. The proposed method was evaluated using the scalp EEG recording from 13 patients with a total number of 47 seizures. It could achieve a sensitivity of 96.15%, an average prediction time of 51.25 minutes with an FPR of 0.463.

References

  1. Adelson, P. D., Nemoto, E., Sheuer, M., Painter, M., Morqan, J., Yonas, H., 1999, 'Noninvasive continuous monitoring of cerebral oxygenation preictally using near-infrared spectroscopy: A preliminary report', Epilepsia,vol. 40, pp. 1484-1489.
  2. Bandarabadi, M., Teixeira, C. A., Direito, B., Dourado, A., 2012, 'Epileptic Seizure Prediction based on a bivariate spectral power methodology', Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 5943-5946.
  3. Bedeeuzzaman, M., Fathima, T., Khan, Y. U., Farooq, O., 2012. Mean absolute deviation and wavelet entropy for seizure prediction. J. Med. Imag. Health. Inform. 2, 238-243.
  4. Bedeeuzzaman, M., Fathima, T., Khan, Y. U., Farooq, O., 2014. Seizure prediction using statistical dispersion measures of intracranial EEG. Biomed. Signal. Process. Control. 10, 338-341.
  5. Chatlani, N., Soraghan, J. J., 2010. Local binary patterns for 1-D signal processing. 18th Europian Signal Process. Conf. Denmark, 95-99.
  6. CHB-MIT Scalp EEG Database. Available from: < http:// physionet.org/physiobank/database/chbmit>. (10 February 2015).
  7. Chiang, C-Y., Chang, N. F., Chen, T. C., Chen, H. H., Chen, L. G., 2011. Seizure Prediction Based on Classification of EEG Synchronisation Patterns with On-line Retraining and Post-Processing Scheme. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 7564-7569.
  8. Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile, C., Colicchio, G., Fuqqetta, F., 2010. Real time epileptic seizure prediction using AR models and Support Vector Machine. IEEE Trans. on Biomedical Eng. 57, 1124-1132.
  9. Cosandier-Rimélé, D., Badier, J.M., Chauvel, P., Wendling, F., 2007. Modeling and interpretation of scalp-EEG and depth-EEG signals during interictal activity. Proc. 29th Annual Int. Conf. IEEE EMBS. 4277-4280.
  10. Direito, B., Ventura, F., Teixeira, C., Dourado, A., 2011. Optimized Feature Subsets for Epileptic Seizure Prediction Studies. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011 1636-1639.
  11. Federico, P., Abbott, D. F., Briellmann, R. S., Harvey, A. S., Jackson, G. D., 2005. Functional MRI of the preictal state. Brain.128, 1811-1817.
  12. Fisher, R. S., Boas, W. E. , Blume, W., Elger, C., Genton, P., Lee, P., Engel, J. Jr., 2005. Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 46, 470-472.
  13. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. F., Moody, G. B., Peng, C.-K., Stanley, H. E. 2000. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circ. 101, e215-e220.
  14. Guo, Z., Zhang, L., Zhang, D., 2010. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. image process. 19, 1657- 1663.
  15. Hively, L., Protopopescu, V., 2003. Channel-consistent forewarning of epileptic events from scalp EEG. IEEE Trans. Biomed. Eng. 50, 584-593.
  16. James, C. J., Gupta, D., 2009. Seizure prediction for epilepsy using a multi-stage phase synchrony based system. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 25-28.
  17. Kaya, Y., Uyar, M., Tekin, R., Yildirim, S., 2014. 1Dlocal binary pattern based feature extraction for classification of epileptic EEG signals. Appl. Mathematics. Computation. 243, 209-219.
  18. Kerem, D. H., Geva, A. B., 2005. Forecasting epilepsy from the heart rate signal, Med. Biological Eng. Computing. 43, 230-239.
  19. Li, S., Zhou, W., Yuan, Q., Liu, Y., 2013. Seizure Prediction Using Spike Rate of Intracranial EEG. IEEE Trans. Neural Systems. Rehabilitation. Eng. 21, 880-886.
  20. Mirowski P. W., Madhavan, D., LeCun, Y., Kuzniecky, R., 2009. Classification of patterns of EEG synchronization for seizure prediction. Clinical. Neurophysiol. 120, 1927-1940.
  21. Ojala, T., Pietikäinen, M., Harwood, D., 1996. A comparative study of texture measures with classification based on feature distributions. Pattern. Recognit. 29, 51-59.
  22. Ouyang, G., Li, X., Li, Y., Guan, X., 2007. Application of wavelet-based similarity analysis to epileptic seizures prediction. Computers. Biol. Med. 37, 430 - 437.
  23. Quen, M. L. V, Martinerie, J., Navaro, V., Boon, P., D'Havé, M., Adam, C., Renault, B., Varela, F. Baulac, M., 2001. Anticipation of epileptic seizures from standard EEG recordings. Lancet, 357, 183-188.
  24. Schad, A., Schindler, K., Schelter, B., Maiwald, T., Brandt, A., Timmer, J., Bonhage, A. S., 2008. Application of a multivariate seizure detection and prediction method to no-invasive and intracranial long-term EEG recordings. Clin. Neurophys. 119, 197- 211.
  25. Shoeb, A. Application of machine learning to epileptic seizure onset detection and treatment. Ph. D. dissertation, Massachusetts Inst. Techno. Cambridge, Sep. 2009.
  26. Soleimani-B., H., Lucas, C., Araabi, B. N., Schwabe, L., 2012. Adaptive prediction of epileptic seizures from intracranial recordings. Biomed. Signal Process. Control, 7, 456 464.
  27. Wang, N., Lyu, M. R., 2014. Extracting and Selecting Distinctive EEG Features for Efficient Epileptic Seizure Prediction. IEEE J. Biomed. Health. Inform, doi: 10.1109/JBHI.2014.2358640.
  28. Winterhalder M., Maiwal, T., Voss, H. U., Aschenbrenner-Scheibe, R., Timmer, J., SchulzeBonhage, A., 2003. The seizure prediction characteristic: A general frame work to assess and compare seizure prediction methods. Epilepsy. Behave.4, 318-325.
  29. Zandi, A. S., Tafreshi, R., Javidan, M., Dumont, G. A., 2013. Predicting Epileptic Seizures in Scalp EEG Based on a Variational Bayesian Gaussian Mixture Model of Zero-Crossing Intervals. IEEE Trans. Biomed. Eng., 60, 1401-1413.
  30. Zandi, A. S., Dumont, G. A., Javidan, M., Tafreshi, R., 2011 Epileptic Seizure Prediction using Variational Mixture of Gaussians. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 7549-7569.
Download


Paper Citation


in Harvard Style

Fathima T., Joseph K. P. and Bedeeuzzaman M. (2016). Epileptic Seizure Prediction in Scalp EEG using One Dimensional Local Binary Pattern based Features . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 25-33. DOI: 10.5220/0005623000250033


in Bibtex Style

@conference{biosignals16,
author={Thasneem Fathima and Paul Joseph K. and M. Bedeeuzzaman},
title={Epileptic Seizure Prediction in Scalp EEG using One Dimensional Local Binary Pattern based Features},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)},
year={2016},
pages={25-33},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005623000250033},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)
TI - Epileptic Seizure Prediction in Scalp EEG using One Dimensional Local Binary Pattern based Features
SN - 978-989-758-170-0
AU - Fathima T.
AU - Joseph K. P.
AU - Bedeeuzzaman M.
PY - 2016
SP - 25
EP - 33
DO - 10.5220/0005623000250033